mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 15:47:01 +08:00
282 lines
7.7 KiB
Go
282 lines
7.7 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package combin
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
const (
|
|
badNegInput = "combin: negative input"
|
|
badSetSize = "combin: n < k"
|
|
badInput = "combin: wrong input slice length"
|
|
nonpositiveDimension = "combin: non-positive dimension"
|
|
)
|
|
|
|
// Binomial returns the binomial coefficient of (n,k), also commonly referred to
|
|
// as "n choose k".
|
|
//
|
|
// The binomial coefficient, C(n,k), is the number of unordered combinations of
|
|
// k elements in a set that is n elements big, and is defined as
|
|
//
|
|
// C(n,k) = n!/((n-k)!k!)
|
|
//
|
|
// n and k must be non-negative with n >= k, otherwise Binomial will panic.
|
|
// No check is made for overflow.
|
|
func Binomial(n, k int) int {
|
|
if n < 0 || k < 0 {
|
|
panic(badNegInput)
|
|
}
|
|
if n < k {
|
|
panic(badSetSize)
|
|
}
|
|
// (n,k) = (n, n-k)
|
|
if k > n/2 {
|
|
k = n - k
|
|
}
|
|
b := 1
|
|
for i := 1; i <= k; i++ {
|
|
b = (n - k + i) * b / i
|
|
}
|
|
return b
|
|
}
|
|
|
|
// GeneralizedBinomial returns the generalized binomial coefficient of (n, k),
|
|
// defined as
|
|
// Γ(n+1) / (Γ(k+1) Γ(n-k+1))
|
|
// where Γ is the Gamma function. GeneralizedBinomial is useful for continuous
|
|
// relaxations of the binomial coefficient, or when the binomial coefficient value
|
|
// may overflow int. In the latter case, one may use math/big for an exact
|
|
// computation.
|
|
//
|
|
// n and k must be non-negative with n >= k, otherwise GeneralizedBinomial will panic.
|
|
func GeneralizedBinomial(n, k float64) float64 {
|
|
return math.Exp(LogGeneralizedBinomial(n, k))
|
|
}
|
|
|
|
// LogGeneralizedBinomial returns the log of the generalized binomial coefficient.
|
|
// See GeneralizedBinomial for more information.
|
|
func LogGeneralizedBinomial(n, k float64) float64 {
|
|
if n < 0 || k < 0 {
|
|
panic(badNegInput)
|
|
}
|
|
if n < k {
|
|
panic(badSetSize)
|
|
}
|
|
a, _ := math.Lgamma(n + 1)
|
|
b, _ := math.Lgamma(k + 1)
|
|
c, _ := math.Lgamma(n - k + 1)
|
|
return a - b - c
|
|
}
|
|
|
|
// CombinationGenerator generates combinations iteratively. Combinations may be
|
|
// called to generate all combinations collectively.
|
|
type CombinationGenerator struct {
|
|
n int
|
|
k int
|
|
previous []int
|
|
remaining int
|
|
}
|
|
|
|
// NewCombinationGenerator returns a CombinationGenerator for generating the
|
|
// combinations of k elements from a set of size n.
|
|
//
|
|
// n and k must be non-negative with n >= k, otherwise NewCombinationGenerator
|
|
// will panic.
|
|
func NewCombinationGenerator(n, k int) *CombinationGenerator {
|
|
return &CombinationGenerator{
|
|
n: n,
|
|
k: k,
|
|
remaining: Binomial(n, k),
|
|
}
|
|
}
|
|
|
|
// Next advances the iterator if there are combinations remaining to be generated,
|
|
// and returns false if all combinations have been generated. Next must be called
|
|
// to initialize the first value before calling Combination or Combination will
|
|
// panic. The value returned by Combination is only changed during calls to Next.
|
|
func (c *CombinationGenerator) Next() bool {
|
|
if c.remaining <= 0 {
|
|
// Next is called before combination, so c.remaining is set to zero before
|
|
// Combination is called. Thus, Combination cannot panic on zero, and a
|
|
// second sentinel value is needed.
|
|
c.remaining = -1
|
|
return false
|
|
}
|
|
if c.previous == nil {
|
|
c.previous = make([]int, c.k)
|
|
for i := range c.previous {
|
|
c.previous[i] = i
|
|
}
|
|
} else {
|
|
nextCombination(c.previous, c.n, c.k)
|
|
}
|
|
c.remaining--
|
|
return true
|
|
}
|
|
|
|
// Combination generates the current combination. If next is non-nil, it must have
|
|
// length k and the result will be stored in-place into combination. If combination
|
|
// is nil a new slice will be allocated and returned. If all of the combinations
|
|
// have already been constructed (Next() returns false), Combination will panic.
|
|
//
|
|
// Next must be called to initialize the first value before calling Combination
|
|
// or Combination will panic. The value returned by Combination is only changed
|
|
// during calls to Next.
|
|
func (c *CombinationGenerator) Combination(combination []int) []int {
|
|
if c.remaining == -1 {
|
|
panic("combin: all combinations have been generated")
|
|
}
|
|
if c.previous == nil {
|
|
panic("combin: Combination called before Next")
|
|
}
|
|
if combination == nil {
|
|
combination = make([]int, c.k)
|
|
}
|
|
if len(combination) != c.k {
|
|
panic(badInput)
|
|
}
|
|
copy(combination, c.previous)
|
|
return combination
|
|
}
|
|
|
|
// Combinations generates all of the combinations of k elements from a
|
|
// set of size n. The returned slice has length Binomial(n,k) and each inner slice
|
|
// has length k.
|
|
//
|
|
// n and k must be non-negative with n >= k, otherwise Combinations will panic.
|
|
//
|
|
// CombinationGenerator may alternatively be used to generate the combinations
|
|
// iteratively instead of collectively.
|
|
func Combinations(n, k int) [][]int {
|
|
combins := Binomial(n, k)
|
|
data := make([][]int, combins)
|
|
if len(data) == 0 {
|
|
return data
|
|
}
|
|
data[0] = make([]int, k)
|
|
for i := range data[0] {
|
|
data[0][i] = i
|
|
}
|
|
for i := 1; i < combins; i++ {
|
|
next := make([]int, k)
|
|
copy(next, data[i-1])
|
|
nextCombination(next, n, k)
|
|
data[i] = next
|
|
}
|
|
return data
|
|
}
|
|
|
|
// nextCombination generates the combination after s, overwriting the input value.
|
|
func nextCombination(s []int, n, k int) {
|
|
for j := k - 1; j >= 0; j-- {
|
|
if s[j] == n+j-k {
|
|
continue
|
|
}
|
|
s[j]++
|
|
for l := j + 1; l < k; l++ {
|
|
s[l] = s[j] + l - j
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// Cartesian returns indices into the cartesian product for sets of the given lengths. The Cartesian
|
|
// product of two sets is the set of all combinations of the items. For example,
|
|
// given the input
|
|
// []int{2, 3, 1}
|
|
// the returned matrix will be
|
|
// [ 0 0 0 ]
|
|
// [ 0 1 0 ]
|
|
// [ 0 2 0 ]
|
|
// [ 1 0 0 ]
|
|
// [ 1 1 0 ]
|
|
// [ 1 2 0 ]
|
|
// Cartesian panics if any of the provided lengths are less than 1.
|
|
func Cartesian(lens []int) [][]int {
|
|
if len(lens) == 0 {
|
|
panic("combin: empty lengths")
|
|
}
|
|
rows := 1
|
|
for _, v := range lens {
|
|
if v < 1 {
|
|
panic("combin: length less than zero")
|
|
}
|
|
rows *= v
|
|
}
|
|
out := make([][]int, rows)
|
|
for i := 0; i < rows; i++ {
|
|
out[i] = SubFor(nil, i, lens)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// IdxFor converts a multi-dimensional index into a linear index for a
|
|
// multi-dimensional space. sub specifies the index for each dimension, and dims
|
|
// specifies the size of each dimension. IdxFor is the inverse of SubFor.
|
|
// IdxFor panics if any of the entries of sub are negative, any of the entries
|
|
// of dim are non-positive, or if sub[i] >= dims[i] for any i.
|
|
func IdxFor(sub, dims []int) int {
|
|
// The index returned is "row-major", that is the last index of sub is
|
|
// continuous.
|
|
var idx int
|
|
stride := 1
|
|
for i := len(dims) - 1; i >= 0; i-- {
|
|
v := sub[i]
|
|
d := dims[i]
|
|
if d <= 0 {
|
|
panic(nonpositiveDimension)
|
|
}
|
|
if v < 0 || v >= d {
|
|
panic("combin: invalid subscript")
|
|
}
|
|
idx += v * stride
|
|
stride *= d
|
|
}
|
|
return idx
|
|
}
|
|
|
|
// SubFor returns the multi-dimensional subscript for the input linear index to
|
|
// the multi-dimensional space. dims specifies the size of each dimension, and
|
|
// idx specifies the linear index. SubFor is the inverse of IdxFor.
|
|
//
|
|
// If sub is non-nil the result is stored in-place into sub, and SubFor will panic
|
|
// if len(sub) != len(dims). If sub is nil a new slice of the appropriate length
|
|
// is allocated. SubFor panics if idx < 0 or if idx is greater than or equal to
|
|
// the product of the dimensions.
|
|
func SubFor(sub []int, idx int, dims []int) []int {
|
|
if sub == nil {
|
|
sub = make([]int, len(dims))
|
|
}
|
|
if len(sub) != len(dims) {
|
|
panic(badInput)
|
|
}
|
|
if idx < 0 {
|
|
panic(badNegInput)
|
|
}
|
|
stride := 1
|
|
for i := len(dims) - 1; i >= 1; i-- {
|
|
stride *= dims[i]
|
|
}
|
|
for i := 0; i < len(dims)-1; i++ {
|
|
v := idx / stride
|
|
d := dims[i]
|
|
if d < 0 {
|
|
panic(nonpositiveDimension)
|
|
}
|
|
if v >= dims[i] {
|
|
panic("combin: index too large")
|
|
}
|
|
sub[i] = v
|
|
idx -= v * stride
|
|
stride /= dims[i+1]
|
|
}
|
|
if idx > dims[len(sub)-1] {
|
|
panic("combin: index too large")
|
|
}
|
|
sub[len(sub)-1] = idx
|
|
return sub
|
|
}
|