Files
gonum/lapack/gonum/dpbtf2.go
Brendan Tracey b3ce51cd98 Add Dpbtf2 for computing the (unblocked) Cholesky decomposition of ba… (#137)
* Add Dpbtf2 for computing the (unblocked) Cholesky decomposition of banded matrices

* respond to PR comments
2017-07-19 07:53:54 -06:00

98 lines
2.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dpbtf2 computes the Cholesky factorization of a symmetric positive banded
// matrix ab. The matrix ab is n×n with kd diagonal bands. The Cholesky
// factorization computed is
// A = U^T * U if ul == blas.Upper
// A = L * L^T if ul == blas.Lower
// ul also specifies the storage of ab. If ul == blas.Upper, then
// ab is stored as an upper-triangular banded matrix with kd super-diagonals,
// and if ul == blas.Lower, ab is stored as a lower-triangular banded matrix
// with kd sub-diagonals. On exit, the banded matrix U or L is stored in-place
// into ab depending on the value of ul. Dpbtf2 returns whether the factorization
// was successfully completed.
//
// The band storage scheme is illustrated below when n = 6, and kd = 2.
// The resulting Cholesky decomposition is stored in the same elements as the
// input band matrix (a11 becomes u11 or l11, etc.).
//
// ul = blas.Upper
// a11 a12 a13
// a22 a23 a24
// a33 a34 a35
// a44 a45 a46
// a55 a56 *
// a66 * *
//
// ul = blas.Lower
// * * a11
// * a21 a22
// a31 a32 a33
// a42 a43 a44
// a53 a54 a55
// a64 a65 a66
//
// Dpbtf2 is the unblocked version of the algorithm, see Dpbtrf for the blocked
// version.
//
// Dpbtf2 is an internal routine, exported for testing purposes.
func (Implementation) Dpbtf2(ul blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool) {
if ul != blas.Upper && ul != blas.Lower {
panic(badUplo)
}
checkSymBanded(ab, n, kd, ldab)
if n == 0 {
return
}
bi := blas64.Implementation()
kld := max(1, ldab-1)
if ul == blas.Upper {
for j := 0; j < n; j++ {
// Compute U(J,J) and test for non positive-definiteness.
ajj := ab[j*ldab]
if ajj <= 0 {
return false
}
ajj = math.Sqrt(ajj)
ab[j*ldab] = ajj
// Compute elements j+1:j+kn of row J and update the trailing submatrix
// within the band.
kn := min(kd, n-j-1)
if kn > 0 {
bi.Dscal(kn, 1/ajj, ab[j*ldab+1:], 1)
bi.Dsyr(blas.Upper, kn, -1, ab[j*ldab+1:], 1, ab[(j+1)*ldab:], kld)
}
}
return true
}
for j := 0; j < n; j++ {
// Compute L(J,J) and test for non positive-definiteness.
ajj := ab[j*ldab+kd]
if ajj <= 0 {
return false
}
ajj = math.Sqrt(ajj)
ab[j*ldab+kd] = ajj
// Compute elements J+1:J+KN of column J and update the trailing submatrix
// within the band.
kn := min(kd, n-j-1)
if kn > 0 {
bi.Dscal(kn, 1/ajj, ab[(j+1)*ldab+kd-1:], kld)
bi.Dsyr(blas.Lower, kn, -1, ab[(j+1)*ldab+kd-1:], kld, ab[(j+1)*ldab+kd:], kld)
}
}
return true
}