mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 23:52:47 +08:00

This is broken out from path to make room for the additional control flow analysis routines that are currently being worked on.
233 lines
5.8 KiB
Go
233 lines
5.8 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package flow
|
|
|
|
import "gonum.org/v1/gonum/graph"
|
|
|
|
// DominatorsSLT returns a dominator tree for all nodes in the flow graph
|
|
// g starting from the given root node using the sophisticated version of
|
|
// the Lengauer-Tarjan algorithm. The SLT algorithm may outperform the
|
|
// simple LT algorithm for very large dense graphs.
|
|
func DominatorsSLT(root graph.Node, g graph.Directed) DominatorTree {
|
|
// The algorithm used here is essentially the
|
|
// sophisticated Lengauer and Tarjan algorithm
|
|
// described in
|
|
// https://doi.org/10.1145%2F357062.357071
|
|
|
|
lt := sLengauerTarjan{
|
|
indexOf: make(map[int64]int),
|
|
base: sltNode{semi: -1},
|
|
}
|
|
lt.base.label = <.base
|
|
|
|
// step 1.
|
|
lt.dfs(g, root)
|
|
|
|
for i := len(lt.nodes) - 1; i > 0; i-- {
|
|
w := lt.nodes[i]
|
|
|
|
// step 2.
|
|
for _, v := range w.pred {
|
|
u := lt.eval(v)
|
|
|
|
if u.semi < w.semi {
|
|
w.semi = u.semi
|
|
}
|
|
}
|
|
|
|
lt.nodes[w.semi].bucket[w] = struct{}{}
|
|
lt.link(w.parent, w)
|
|
|
|
// step 3.
|
|
for v := range w.parent.bucket {
|
|
delete(w.parent.bucket, v)
|
|
|
|
u := lt.eval(v)
|
|
if u.semi < v.semi {
|
|
v.dom = u
|
|
} else {
|
|
v.dom = w.parent
|
|
}
|
|
}
|
|
}
|
|
|
|
// step 4.
|
|
for _, w := range lt.nodes[1:] {
|
|
if w.dom.node.ID() != lt.nodes[w.semi].node.ID() {
|
|
w.dom = w.dom.dom
|
|
}
|
|
}
|
|
|
|
// Construct the public-facing dominator tree structure.
|
|
dominatorOf := make(map[int64]graph.Node)
|
|
dominatedBy := make(map[int64][]graph.Node)
|
|
for _, w := range lt.nodes[1:] {
|
|
dominatorOf[w.node.ID()] = w.dom.node
|
|
did := w.dom.node.ID()
|
|
dominatedBy[did] = append(dominatedBy[did], w.node)
|
|
}
|
|
return DominatorTree{root: root, dominatorOf: dominatorOf, dominatedBy: dominatedBy}
|
|
}
|
|
|
|
// sLengauerTarjan holds global state of the Lengauer-Tarjan algorithm.
|
|
// This is a mapping between nodes and the postordering of the nodes.
|
|
type sLengauerTarjan struct {
|
|
// nodes is the nodes traversed during the
|
|
// Lengauer-Tarjan depth-first-search.
|
|
nodes []*sltNode
|
|
// indexOf contains a mapping between
|
|
// the id-dense representation of the
|
|
// graph and the potentially id-sparse
|
|
// nodes held in nodes.
|
|
//
|
|
// This corresponds to the vertex
|
|
// number of the node in the Lengauer-
|
|
// Tarjan algorithm.
|
|
indexOf map[int64]int
|
|
|
|
// base is the base label for balanced
|
|
// tree path compression used in the
|
|
// sophisticated Lengauer-Tarjan
|
|
// algorith,
|
|
base sltNode
|
|
}
|
|
|
|
// sltNode is a graph node with accounting for the Lengauer-Tarjan
|
|
// algorithm.
|
|
//
|
|
// For the purposes of documentation the ltNode is given the name w.
|
|
type sltNode struct {
|
|
node graph.Node
|
|
|
|
// parent is vertex which is the parent of w
|
|
// in the spanning tree generated by the search.
|
|
parent *sltNode
|
|
|
|
// pred is the set of vertices v such that (v, w)
|
|
// is an edge of the graph.
|
|
pred []*sltNode
|
|
|
|
// semi is a number defined as follows:
|
|
// (i) After w is numbered but before its semidominator
|
|
// is computed, semi is the number of w.
|
|
// (ii) After the semidominator of w is computed, semi
|
|
// is the number of the semidominator of w.
|
|
semi int
|
|
|
|
// size is the tree size of w used in the
|
|
// sophisticated algorithm.
|
|
size int
|
|
|
|
// child is the child node of w used in the
|
|
// sophisticated algorithm.
|
|
child *sltNode
|
|
|
|
// bucket is the set of vertices whose
|
|
// semidominator is w.
|
|
bucket map[*sltNode]struct{}
|
|
|
|
// dom is vertex defined as follows:
|
|
// (i) After step 3, if the semidominator of w is its
|
|
// immediate dominator, then dom is the immediate
|
|
// dominator of w. Otherwise dom is a vertex v
|
|
// whose number is smaller than w and whose immediate
|
|
// dominator is also w's immediate dominator.
|
|
// (ii) After step 4, dom is the immediate dominator of w.
|
|
dom *sltNode
|
|
|
|
// In general ancestor is nil only if w is a tree root
|
|
// in the forest; otherwise ancestor is an ancestor
|
|
// of w in the forest.
|
|
ancestor *sltNode
|
|
|
|
// Initially label is w. It is adjusted during
|
|
// the algorithm to maintain invariant (3) in the
|
|
// Lengauer and Tarjan paper.
|
|
label *sltNode
|
|
}
|
|
|
|
// dfs is the Sophisticated Lengauer-Tarjan DFS procedure.
|
|
func (lt *sLengauerTarjan) dfs(g graph.Directed, v graph.Node) {
|
|
i := len(lt.nodes)
|
|
lt.indexOf[v.ID()] = i
|
|
ltv := &sltNode{
|
|
node: v,
|
|
semi: i,
|
|
size: 1,
|
|
child: <.base,
|
|
bucket: make(map[*sltNode]struct{}),
|
|
}
|
|
ltv.label = ltv
|
|
lt.nodes = append(lt.nodes, ltv)
|
|
|
|
for _, w := range graph.NodesOf(g.From(v.ID())) {
|
|
wid := w.ID()
|
|
|
|
idx, ok := lt.indexOf[wid]
|
|
if !ok {
|
|
lt.dfs(g, w)
|
|
|
|
// We place this below the recursive call
|
|
// in contrast to the original algorithm
|
|
// since w needs to be initialised, and
|
|
// this happens in the child call to dfs.
|
|
idx, ok = lt.indexOf[wid]
|
|
if !ok {
|
|
panic("path: unintialized node")
|
|
}
|
|
lt.nodes[idx].parent = ltv
|
|
}
|
|
ltw := lt.nodes[idx]
|
|
ltw.pred = append(ltw.pred, ltv)
|
|
}
|
|
}
|
|
|
|
// compress is the Sophisticated Lengauer-Tarjan COMPRESS procedure.
|
|
func (lt *sLengauerTarjan) compress(v *sltNode) {
|
|
if v.ancestor.ancestor != nil {
|
|
lt.compress(v.ancestor)
|
|
if v.ancestor.label.semi < v.label.semi {
|
|
v.label = v.ancestor.label
|
|
}
|
|
v.ancestor = v.ancestor.ancestor
|
|
}
|
|
}
|
|
|
|
// eval is the Sophisticated Lengauer-Tarjan EVAL function.
|
|
func (lt *sLengauerTarjan) eval(v *sltNode) *sltNode {
|
|
if v.ancestor == nil {
|
|
return v.label
|
|
}
|
|
lt.compress(v)
|
|
if v.ancestor.label.semi >= v.label.semi {
|
|
return v.label
|
|
}
|
|
return v.ancestor.label
|
|
}
|
|
|
|
// link is the Sophisticated Lengauer-Tarjan LINK procedure.
|
|
func (*sLengauerTarjan) link(v, w *sltNode) {
|
|
s := w
|
|
for w.label.semi < s.child.label.semi {
|
|
if s.size+s.child.child.size >= 2*s.child.size {
|
|
s.child.ancestor = s
|
|
s.child = s.child.child
|
|
} else {
|
|
s.child.size = s.size
|
|
s.ancestor = s.child
|
|
s = s.child
|
|
}
|
|
}
|
|
s.label = w.label
|
|
v.size += w.size
|
|
if v.size < 2*w.size {
|
|
s, v.child = v.child, s
|
|
}
|
|
for s != nil {
|
|
s.ancestor = v
|
|
s = s.child
|
|
}
|
|
}
|