mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	 f9d0eed525
			
		
	
	f9d0eed525
	
	
	
		
			
			* Added an implementation of 2 associate complete elliptic integrals B(m),D(m). * Added tests for the implemented integrals. B(m) and D(m) can be expressed via K(m) and E(m), but with cancellation problems.
		
			
				
	
	
		
			53 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package mathext
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"testing"
 | |
| )
 | |
| 
 | |
| // TestCompleteKE checks if the Legendre's relation for m=0.0001(0.0001)0.9999
 | |
| // is satisfied with accuracy 1e-14.
 | |
| func TestCompleteKE(t *testing.T) {
 | |
| 	const tol = 1.0e-14
 | |
| 
 | |
| 	for m := 1; m <= 9999; m++ {
 | |
| 		mf := float64(m) / 10000
 | |
| 		mp := 1 - mf
 | |
| 		K, Kp := CompleteK(mf), CompleteK(mp)
 | |
| 		E, Ep := CompleteE(mf), CompleteE(mp)
 | |
| 		legendre := math.Abs(E*Kp + Ep*K - K*Kp - math.Pi/2)
 | |
| 		if legendre > tol {
 | |
| 			t.Fatalf("legendre > tol: m=%v, legendre=%v, tol=%v", mf, legendre, tol)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestCompleteBD checks if the relations between two associate elliptic integrals B(m), D(m)
 | |
| // and more common Legendre's elliptic integrals K(m), E(m) are satisfied with accuracy 1e-14
 | |
| // for m=0.0001(0.0001)0.9999.
 | |
| //
 | |
| // K(m) and E(m) can be computed without cancellation problems as following:
 | |
| //	K(m) = B(m) + D(m),
 | |
| //	E(m) = B(m) + (1-m)D(m).
 | |
| func TestCompleteBD(t *testing.T) {
 | |
| 	const tol = 1.0e-14
 | |
| 
 | |
| 	for m := 1; m <= 9999; m++ {
 | |
| 		mf := float64(m) / 10000
 | |
| 		B, D := CompleteB(mf), CompleteD(mf)
 | |
| 		K, E := CompleteK(mf), CompleteE(mf)
 | |
| 		difference1 := math.Abs(K - (B + D))
 | |
| 		difference2 := math.Abs(E - (B + (1-mf)*D))
 | |
| 		if difference1 > tol {
 | |
| 			t.Fatalf("difference1 > tol: m=%v, difference1=%v, tol=%v", mf, difference1, tol)
 | |
| 		}
 | |
| 		if difference2 > tol {
 | |
| 			t.Fatalf("difference2 > tol: m=%v, difference2=%v, tol=%v", mf, difference2, tol)
 | |
| 		}
 | |
| 	}
 | |
| }
 |