mirror of
https://github.com/gonum/gonum.git
synced 2025-10-28 09:31:40 +08:00
Removed duplicated interface Improve MH comment Made MH examples Documentation fixes Fix documentation and permute LHC
36 lines
1.1 KiB
Go
36 lines
1.1 KiB
Go
package sample
|
|
|
|
import "github.com/gonum/stat/dist"
|
|
|
|
type ProposalDist struct {
|
|
Sigma float64
|
|
}
|
|
|
|
func (p ProposalDist) ConditionalRand(y float64) float64 {
|
|
return dist.Normal{Mu: y, Sigma: p.Sigma}.Rand()
|
|
}
|
|
|
|
func (p ProposalDist) ConditionalLogProb(x, y float64) float64 {
|
|
return dist.Normal{Mu: y, Sigma: p.Sigma}.LogProb(x)
|
|
}
|
|
|
|
func ExampleMetropolisHastings_burnin() {
|
|
n := 1000 // The number of samples to generate.
|
|
burnin := 50 // Number of samples to ignore at the start.
|
|
var initial float64
|
|
// target is the distribution from which we would like to sample.
|
|
target := dist.Weibull{K: 5, Lambda: 0.5}
|
|
// proposal is the proposal distribution. Here, we are choosing
|
|
// a tight Gaussian distribution around the current location. In
|
|
// typical problems, if Sigma is too small, it takes a lot of samples
|
|
// to move around the distribution. If Sigma is too large, it can be hard
|
|
// to find acceptable samples.
|
|
proposal := ProposalDist{Sigma: 0.2}
|
|
|
|
samples := make([]float64, n+burnin)
|
|
MetropolisHastings(samples, initial, target, proposal, nil)
|
|
|
|
// Remove the initial samples through slicing.
|
|
samples = samples[burnin:]
|
|
}
|