mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package f32
 | ||
| 
 | ||
| // GemvN computes
 | ||
| //  y = alpha * A * x + beta * y
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
 | ||
| func GemvN(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) {
 | ||
| 	var kx, ky, i uintptr
 | ||
| 	if int(incX) < 0 {
 | ||
| 		kx = uintptr(-int(n-1) * int(incX))
 | ||
| 	}
 | ||
| 	if int(incY) < 0 {
 | ||
| 		ky = uintptr(-int(m-1) * int(incY))
 | ||
| 	}
 | ||
| 
 | ||
| 	if incX == 1 && incY == 1 {
 | ||
| 		if beta == 0 {
 | ||
| 			for i = 0; i < m; i++ {
 | ||
| 				y[i] = alpha * DotUnitary(a[lda*i:lda*i+n], x)
 | ||
| 			}
 | ||
| 			return
 | ||
| 		}
 | ||
| 		for i = 0; i < m; i++ {
 | ||
| 			y[i] = y[i]*beta + alpha*DotUnitary(a[lda*i:lda*i+n], x)
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	iy := ky
 | ||
| 	if beta == 0 {
 | ||
| 		for i = 0; i < m; i++ {
 | ||
| 			y[iy] = alpha * DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
 | ||
| 			iy += incY
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	for i = 0; i < m; i++ {
 | ||
| 		y[iy] = y[iy]*beta + alpha*DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
 | ||
| 		iy += incY
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // GemvT computes
 | ||
| //  y = alpha * Aᵀ * x + beta * y
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
 | ||
| func GemvT(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) {
 | ||
| 	var kx, ky, i uintptr
 | ||
| 	if int(incX) < 0 {
 | ||
| 		kx = uintptr(-int(m-1) * int(incX))
 | ||
| 	}
 | ||
| 	if int(incY) < 0 {
 | ||
| 		ky = uintptr(-int(n-1) * int(incY))
 | ||
| 	}
 | ||
| 	switch {
 | ||
| 	case beta == 0: // beta == 0 is special-cased to memclear
 | ||
| 		if incY == 1 {
 | ||
| 			for i := range y {
 | ||
| 				y[i] = 0
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			iy := ky
 | ||
| 			for i := 0; i < int(n); i++ {
 | ||
| 				y[iy] = 0
 | ||
| 				iy += incY
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case int(incY) < 0:
 | ||
| 		ScalInc(beta, y, n, uintptr(int(-incY)))
 | ||
| 	case incY == 1:
 | ||
| 		ScalUnitary(beta, y[:n])
 | ||
| 	default:
 | ||
| 		ScalInc(beta, y, n, incY)
 | ||
| 	}
 | ||
| 
 | ||
| 	if incX == 1 && incY == 1 {
 | ||
| 		for i = 0; i < m; i++ {
 | ||
| 			AxpyUnitaryTo(y, alpha*x[i], a[lda*i:lda*i+n], y)
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	ix := kx
 | ||
| 	for i = 0; i < m; i++ {
 | ||
| 		AxpyInc(alpha*x[ix], a[lda*i:lda*i+n], y, n, 1, incY, 0, ky)
 | ||
| 		ix += incX
 | ||
| 	}
 | ||
| }
 | 
