Files
gonum/internal/asm/f32/gemv.go

89 lines
2.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package f32
// GemvN computes
// y = alpha * A * x + beta * y
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvN(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) {
var kx, ky, i uintptr
if int(incX) < 0 {
kx = uintptr(-int(n-1) * int(incX))
}
if int(incY) < 0 {
ky = uintptr(-int(m-1) * int(incY))
}
if incX == 1 && incY == 1 {
if beta == 0 {
for i = 0; i < m; i++ {
y[i] = alpha * DotUnitary(a[lda*i:lda*i+n], x)
}
return
}
for i = 0; i < m; i++ {
y[i] = y[i]*beta + alpha*DotUnitary(a[lda*i:lda*i+n], x)
}
return
}
iy := ky
if beta == 0 {
for i = 0; i < m; i++ {
y[iy] = alpha * DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
iy += incY
}
return
}
for i = 0; i < m; i++ {
y[iy] = y[iy]*beta + alpha*DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
iy += incY
}
}
// GemvT computes
// y = alpha * Aᵀ * x + beta * y
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvT(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) {
var kx, ky, i uintptr
if int(incX) < 0 {
kx = uintptr(-int(m-1) * int(incX))
}
if int(incY) < 0 {
ky = uintptr(-int(n-1) * int(incY))
}
switch {
case beta == 0: // beta == 0 is special-cased to memclear
if incY == 1 {
for i := range y {
y[i] = 0
}
} else {
iy := ky
for i := 0; i < int(n); i++ {
y[iy] = 0
iy += incY
}
}
case int(incY) < 0:
ScalInc(beta, y, n, uintptr(int(-incY)))
case incY == 1:
ScalUnitary(beta, y[:n])
default:
ScalInc(beta, y, n, incY)
}
if incX == 1 && incY == 1 {
for i = 0; i < m; i++ {
AxpyUnitaryTo(y, alpha*x[i], a[lda*i:lda*i+n], y)
}
return
}
ix := kx
for i = 0; i < m; i++ {
AxpyInc(alpha*x[ix], a[lda*i:lda*i+n], y, n, 1, incY, 0, ky)
ix += incX
}
}