Files
gonum/mat/qr_test.go
Brendan Tracey 3fa9374bd4 matrix: rename matrix to mat, and merge with mat64 and cmat128.
This merges the three packages, matrix, mat64, and cmat128. It then renames this big package to mat. It fixes the import statements and corresponding code
2017-06-13 10:26:10 -06:00

206 lines
4.1 KiB
Go

// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"math/rand"
"testing"
"gonum.org/v1/gonum/blas/blas64"
)
func TestQR(t *testing.T) {
for _, test := range []struct {
m, n int
}{
{5, 5},
{10, 5},
} {
m := test.m
n := test.n
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rand.NormFloat64())
}
}
var want Dense
want.Clone(a)
var qr QR
qr.Factorize(a)
q := qr.QTo(nil)
if !isOrthonormal(q, 1e-10) {
t.Errorf("Q is not orthonormal: m = %v, n = %v", m, n)
}
r := qr.RTo(nil)
var got Dense
got.Mul(q, r)
if !EqualApprox(&got, &want, 1e-12) {
t.Errorf("QR does not equal original matrix. \nWant: %v\nGot: %v", want, got)
}
}
}
func isOrthonormal(q *Dense, tol float64) bool {
m, n := q.Dims()
if m != n {
return false
}
for i := 0; i < m; i++ {
for j := i; j < m; j++ {
dot := blas64.Dot(m,
blas64.Vector{Inc: 1, Data: q.mat.Data[i*q.mat.Stride:]},
blas64.Vector{Inc: 1, Data: q.mat.Data[j*q.mat.Stride:]},
)
// Dot product should be 1 if i == j and 0 otherwise.
if i == j && math.Abs(dot-1) > tol {
return false
}
if i != j && math.Abs(dot) > tol {
return false
}
}
}
return true
}
func TestSolveQR(t *testing.T) {
for _, trans := range []bool{false, true} {
for _, test := range []struct {
m, n, bc int
}{
{5, 5, 1},
{10, 5, 1},
{5, 5, 3},
{10, 5, 3},
} {
m := test.m
n := test.n
bc := test.bc
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rand.Float64())
}
}
br := m
if trans {
br = n
}
b := NewDense(br, bc, nil)
for i := 0; i < br; i++ {
for j := 0; j < bc; j++ {
b.Set(i, j, rand.Float64())
}
}
var x Dense
qr := &QR{}
qr.Factorize(a)
x.SolveQR(qr, trans, b)
// Test that the normal equations hold.
// A^T * A * x = A^T * b if !trans
// A * A^T * x = A * b if trans
var lhs Dense
var rhs Dense
if trans {
var tmp Dense
tmp.Mul(a, a.T())
lhs.Mul(&tmp, &x)
rhs.Mul(a, b)
} else {
var tmp Dense
tmp.Mul(a.T(), a)
lhs.Mul(&tmp, &x)
rhs.Mul(a.T(), b)
}
if !EqualApprox(&lhs, &rhs, 1e-10) {
t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
}
}
}
// TODO(btracey): Add in testOneInput when it exists.
}
func TestSolveQRVec(t *testing.T) {
for _, trans := range []bool{false, true} {
for _, test := range []struct {
m, n int
}{
{5, 5},
{10, 5},
} {
m := test.m
n := test.n
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rand.Float64())
}
}
br := m
if trans {
br = n
}
b := NewVector(br, nil)
for i := 0; i < br; i++ {
b.SetVec(i, rand.Float64())
}
var x Vector
qr := &QR{}
qr.Factorize(a)
x.SolveQRVec(qr, trans, b)
// Test that the normal equations hold.
// A^T * A * x = A^T * b if !trans
// A * A^T * x = A * b if trans
var lhs Dense
var rhs Dense
if trans {
var tmp Dense
tmp.Mul(a, a.T())
lhs.Mul(&tmp, &x)
rhs.Mul(a, b)
} else {
var tmp Dense
tmp.Mul(a.T(), a)
lhs.Mul(&tmp, &x)
rhs.Mul(a.T(), b)
}
if !EqualApprox(&lhs, &rhs, 1e-10) {
t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
}
}
}
// TODO(btracey): Add in testOneInput when it exists.
}
func TestSolveQRCond(t *testing.T) {
for _, test := range []*Dense{
NewDense(2, 2, []float64{1, 0, 0, 1e-20}),
NewDense(3, 2, []float64{1, 0, 0, 1e-20, 0, 0}),
} {
m, _ := test.Dims()
var qr QR
qr.Factorize(test)
b := NewDense(m, 2, nil)
var x Dense
if err := x.SolveQR(&qr, false, b); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
bvec := NewVector(m, nil)
var xvec Vector
if err := xvec.SolveQRVec(&qr, false, bvec); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
}
}