Files
gonum/mat/cholesky_example_test.go
Brendan Tracey 3fa9374bd4 matrix: rename matrix to mat, and merge with mat64 and cmat128.
This merges the three packages, matrix, mat64, and cmat128. It then renames this big package to mat. It fixes the import statements and corresponding code
2017-06-13 10:26:10 -06:00

124 lines
3.2 KiB
Go

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat_test
import (
"fmt"
"gonum.org/v1/gonum/mat"
)
func ExampleCholesky() {
// Construct a symmetric positive definite matrix.
tmp := mat.NewDense(4, 4, []float64{
2, 6, 8, -4,
1, 8, 7, -2,
2, 2, 1, 7,
8, -2, -2, 1,
})
var a mat.SymDense
a.SymOuterK(1, tmp)
fmt.Printf("a = %0.4v\n", mat.Formatted(&a, mat.Prefix(" ")))
// Compute the cholesky factorization.
var chol mat.Cholesky
if ok := chol.Factorize(&a); !ok {
fmt.Println("a matrix is not positive semi-definite.")
}
// Find the determinant.
fmt.Printf("\nThe determinant of a is %0.4g\n\n", chol.Det())
// Use the factorization to solve the system of equations a * x = b.
b := mat.NewVector(4, []float64{1, 2, 3, 4})
var x mat.Vector
if err := x.SolveCholeskyVec(&chol, b); err != nil {
fmt.Println("Matrix is near singular: ", err)
}
fmt.Println("Solve a * x = b")
fmt.Printf("x = %0.4v\n", mat.Formatted(&x, mat.Prefix(" ")))
// Extract the factorization and check that it equals the original matrix.
var t mat.TriDense
t.LFromCholesky(&chol)
var test mat.Dense
test.Mul(&t, t.T())
fmt.Println()
fmt.Printf("L * L^T = %0.4v\n", mat.Formatted(&a, mat.Prefix(" ")))
// Output:
// a = ⎡120 114 -4 -16⎤
// ⎢114 118 11 -24⎥
// ⎢ -4 11 58 17⎥
// ⎣-16 -24 17 73⎦
//
// The determinant of a is 1.543e+06
//
// Solve a * x = b
// x = ⎡ -0.239⎤
// ⎢ 0.2732⎥
// ⎢-0.04681⎥
// ⎣ 0.1031⎦
//
// L * L^T = ⎡120 114 -4 -16⎤
// ⎢114 118 11 -24⎥
// ⎢ -4 11 58 17⎥
// ⎣-16 -24 17 73⎦
}
func ExampleCholeskySymRankOne() {
a := mat.NewSymDense(4, []float64{
1, 1, 1, 1,
0, 2, 3, 4,
0, 0, 6, 10,
0, 0, 0, 20,
})
fmt.Printf("A = %0.4v\n", mat.Formatted(a, mat.Prefix(" ")))
// Compute the Cholesky factorization.
var chol mat.Cholesky
if ok := chol.Factorize(a); !ok {
fmt.Println("matrix a is not positive definite.")
}
x := mat.NewVector(4, []float64{0, 0, 0, 1})
fmt.Printf("\nx = %0.4v\n", mat.Formatted(x, mat.Prefix(" ")))
// Rank-1 update the factorization.
chol.SymRankOne(&chol, 1, x)
// Rank-1 update the matrix a.
a.SymRankOne(a, 1, x)
var au mat.SymDense
au.FromCholesky(&chol)
// Print the matrix that was updated directly.
fmt.Printf("\nA' = %0.4v\n", mat.Formatted(a, mat.Prefix(" ")))
// Print the matrix recovered from the factorization.
fmt.Printf("\nU'^T * U' = %0.4v\n", mat.Formatted(&au, mat.Prefix(" ")))
// Output:
// A = ⎡ 1 1 1 1⎤
// ⎢ 1 2 3 4⎥
// ⎢ 1 3 6 10⎥
// ⎣ 1 4 10 20⎦
//
// x = ⎡0⎤
// ⎢0⎥
// ⎢0⎥
// ⎣1⎦
//
// A' = ⎡ 1 1 1 1⎤
// ⎢ 1 2 3 4⎥
// ⎢ 1 3 6 10⎥
// ⎣ 1 4 10 21⎦
//
// U'^T * U' = ⎡ 1 1 1 1⎤
// ⎢ 1 2 3 4⎥
// ⎢ 1 3 6 10⎥
// ⎣ 1 4 10 21⎦
}