mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-27 01:00:26 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			122 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2018 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package optimize
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/mat"
 | |
| )
 | |
| 
 | |
| // ListSearch finds the optimum location from a specified list of possible
 | |
| // optimum locations.
 | |
| type ListSearch struct {
 | |
| 	// Locs is the list of locations to optimize. Each row of Locs is a location
 | |
| 	// to optimize. The number of columns of Locs must match the dimensions
 | |
| 	// passed to InitGlobal, and Locs must have at least one row.
 | |
| 	Locs mat.Matrix
 | |
| 
 | |
| 	eval    int
 | |
| 	rows    int
 | |
| 	bestF   float64
 | |
| 	bestIdx int
 | |
| }
 | |
| 
 | |
| func (*ListSearch) Needs() struct{ Gradient, Hessian bool } {
 | |
| 	return struct{ Gradient, Hessian bool }{false, false}
 | |
| }
 | |
| 
 | |
| // InitGlobal initializes the method for optimization. The input dimension
 | |
| // must match the number of columns of Locs.
 | |
| func (l *ListSearch) Init(dim, tasks int) int {
 | |
| 	if dim <= 0 {
 | |
| 		panic(nonpositiveDimension)
 | |
| 	}
 | |
| 	if tasks < 0 {
 | |
| 		panic(negativeTasks)
 | |
| 	}
 | |
| 	r, c := l.Locs.Dims()
 | |
| 	if r == 0 {
 | |
| 		panic("listsearch: list matrix has no rows")
 | |
| 	}
 | |
| 	if c != dim {
 | |
| 		panic("listsearch: supplied dimension does not match list columns")
 | |
| 	}
 | |
| 	l.eval = 0
 | |
| 	l.rows = r
 | |
| 	l.bestF = math.Inf(1)
 | |
| 	l.bestIdx = -1
 | |
| 	return min(r, tasks)
 | |
| }
 | |
| 
 | |
| func (l *ListSearch) sendNewLoc(operation chan<- Task, task Task) {
 | |
| 	task.Op = FuncEvaluation
 | |
| 	task.ID = l.eval
 | |
| 	mat.Row(task.X, l.eval, l.Locs)
 | |
| 	l.eval++
 | |
| 	operation <- task
 | |
| }
 | |
| 
 | |
| func (l *ListSearch) updateMajor(operation chan<- Task, task Task) {
 | |
| 	// Update the best value seen so far, and send a MajorIteration.
 | |
| 	if task.F < l.bestF {
 | |
| 		l.bestF = task.F
 | |
| 		l.bestIdx = task.ID
 | |
| 	} else {
 | |
| 		task.F = l.bestF
 | |
| 		mat.Row(task.X, l.bestIdx, l.Locs)
 | |
| 	}
 | |
| 	task.Op = MajorIteration
 | |
| 	operation <- task
 | |
| }
 | |
| 
 | |
| func (l *ListSearch) Status() (Status, error) {
 | |
| 	if l.eval < l.rows {
 | |
| 		return NotTerminated, nil
 | |
| 	}
 | |
| 	return MethodConverge, nil
 | |
| }
 | |
| 
 | |
| func (l *ListSearch) Run(operation chan<- Task, result <-chan Task, tasks []Task) {
 | |
| 	// Send initial tasks to evaluate
 | |
| 	for _, task := range tasks {
 | |
| 		l.sendNewLoc(operation, task)
 | |
| 	}
 | |
| 	// Read from the channel until PostIteration is sent or until the list of
 | |
| 	// tasks is exhausted.
 | |
| Loop:
 | |
| 	for {
 | |
| 		task := <-result
 | |
| 		switch task.Op {
 | |
| 		default:
 | |
| 			panic("unknown operation")
 | |
| 		case PostIteration:
 | |
| 			break Loop
 | |
| 		case MajorIteration:
 | |
| 			if l.eval == l.rows {
 | |
| 				task.Op = MethodDone
 | |
| 				operation <- task
 | |
| 				continue
 | |
| 			}
 | |
| 			l.sendNewLoc(operation, task)
 | |
| 		case FuncEvaluation:
 | |
| 			l.updateMajor(operation, task)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Post iteration was sent, or the list has been completed. Read in the final
 | |
| 	// list of tasks.
 | |
| 	for task := range result {
 | |
| 		switch task.Op {
 | |
| 		default:
 | |
| 			panic("unknown operation")
 | |
| 		case MajorIteration:
 | |
| 		case FuncEvaluation:
 | |
| 			l.updateMajor(operation, task)
 | |
| 		}
 | |
| 	}
 | |
| 	close(operation)
 | |
| }
 | 
