mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-27 01:00:26 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			187 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2014 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package optimize
 | |
| 
 | |
| import (
 | |
| 	"gonum.org/v1/gonum/floats"
 | |
| )
 | |
| 
 | |
| // LBFGS implements the limited-memory BFGS method for gradient-based
 | |
| // unconstrained minimization.
 | |
| //
 | |
| // It stores a modified version of the inverse Hessian approximation H
 | |
| // implicitly from the last Store iterations while the normal BFGS method
 | |
| // stores and manipulates H directly as a dense matrix. Therefore LBFGS is more
 | |
| // appropriate than BFGS for large problems as the cost of LBFGS scales as
 | |
| // O(Store * dim) while BFGS scales as O(dim^2). The "forgetful" nature of
 | |
| // LBFGS may also make it perform better than BFGS for functions with Hessians
 | |
| // that vary rapidly spatially.
 | |
| type LBFGS struct {
 | |
| 	// Linesearcher selects suitable steps along the descent direction.
 | |
| 	// Accepted steps should satisfy the strong Wolfe conditions.
 | |
| 	// If Linesearcher is nil, a reasonable default will be chosen.
 | |
| 	Linesearcher Linesearcher
 | |
| 	// Store is the size of the limited-memory storage.
 | |
| 	// If Store is 0, it will be defaulted to 15.
 | |
| 	Store int
 | |
| 
 | |
| 	status Status
 | |
| 	err    error
 | |
| 
 | |
| 	ls *LinesearchMethod
 | |
| 
 | |
| 	dim  int       // Dimension of the problem
 | |
| 	x    []float64 // Location at the last major iteration
 | |
| 	grad []float64 // Gradient at the last major iteration
 | |
| 
 | |
| 	// History
 | |
| 	oldest int         // Index of the oldest element of the history
 | |
| 	y      [][]float64 // Last Store values of y
 | |
| 	s      [][]float64 // Last Store values of s
 | |
| 	rho    []float64   // Last Store values of rho
 | |
| 	a      []float64   // Cache of Hessian updates
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) Status() (Status, error) {
 | |
| 	return l.status, l.err
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) Init(dim, tasks int) int {
 | |
| 	l.status = NotTerminated
 | |
| 	l.err = nil
 | |
| 	return 1
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) Run(operation chan<- Task, result <-chan Task, tasks []Task) {
 | |
| 	l.status, l.err = localOptimizer{}.run(l, operation, result, tasks)
 | |
| 	close(operation)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) initLocal(loc *Location) (Operation, error) {
 | |
| 	if l.Linesearcher == nil {
 | |
| 		l.Linesearcher = &Bisection{}
 | |
| 	}
 | |
| 	if l.Store == 0 {
 | |
| 		l.Store = 15
 | |
| 	}
 | |
| 
 | |
| 	if l.ls == nil {
 | |
| 		l.ls = &LinesearchMethod{}
 | |
| 	}
 | |
| 	l.ls.Linesearcher = l.Linesearcher
 | |
| 	l.ls.NextDirectioner = l
 | |
| 
 | |
| 	return l.ls.Init(loc)
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) iterateLocal(loc *Location) (Operation, error) {
 | |
| 	return l.ls.Iterate(loc)
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
 | |
| 	dim := len(loc.X)
 | |
| 	l.dim = dim
 | |
| 	l.oldest = 0
 | |
| 
 | |
| 	l.a = resize(l.a, l.Store)
 | |
| 	l.rho = resize(l.rho, l.Store)
 | |
| 	l.y = l.initHistory(l.y)
 | |
| 	l.s = l.initHistory(l.s)
 | |
| 
 | |
| 	l.x = resize(l.x, dim)
 | |
| 	copy(l.x, loc.X)
 | |
| 
 | |
| 	l.grad = resize(l.grad, dim)
 | |
| 	copy(l.grad, loc.Gradient)
 | |
| 
 | |
| 	copy(dir, loc.Gradient)
 | |
| 	floats.Scale(-1, dir)
 | |
| 	return 1 / floats.Norm(dir, 2)
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) initHistory(hist [][]float64) [][]float64 {
 | |
| 	c := cap(hist)
 | |
| 	if c < l.Store {
 | |
| 		n := make([][]float64, l.Store-c)
 | |
| 		hist = append(hist[:c], n...)
 | |
| 	}
 | |
| 	hist = hist[:l.Store]
 | |
| 	for i := range hist {
 | |
| 		hist[i] = resize(hist[i], l.dim)
 | |
| 		for j := range hist[i] {
 | |
| 			hist[i][j] = 0
 | |
| 		}
 | |
| 	}
 | |
| 	return hist
 | |
| }
 | |
| 
 | |
| func (l *LBFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
 | |
| 	// Uses two-loop correction as described in
 | |
| 	// Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). Springer (2006), chapter 7, page 178.
 | |
| 
 | |
| 	if len(loc.X) != l.dim {
 | |
| 		panic("lbfgs: unexpected size mismatch")
 | |
| 	}
 | |
| 	if len(loc.Gradient) != l.dim {
 | |
| 		panic("lbfgs: unexpected size mismatch")
 | |
| 	}
 | |
| 	if len(dir) != l.dim {
 | |
| 		panic("lbfgs: unexpected size mismatch")
 | |
| 	}
 | |
| 
 | |
| 	y := l.y[l.oldest]
 | |
| 	floats.SubTo(y, loc.Gradient, l.grad)
 | |
| 	s := l.s[l.oldest]
 | |
| 	floats.SubTo(s, loc.X, l.x)
 | |
| 	sDotY := floats.Dot(s, y)
 | |
| 	l.rho[l.oldest] = 1 / sDotY
 | |
| 
 | |
| 	l.oldest = (l.oldest + 1) % l.Store
 | |
| 
 | |
| 	copy(l.x, loc.X)
 | |
| 	copy(l.grad, loc.Gradient)
 | |
| 	copy(dir, loc.Gradient)
 | |
| 
 | |
| 	// Start with the most recent element and go backward,
 | |
| 	for i := 0; i < l.Store; i++ {
 | |
| 		idx := l.oldest - i - 1
 | |
| 		if idx < 0 {
 | |
| 			idx += l.Store
 | |
| 		}
 | |
| 		l.a[idx] = l.rho[idx] * floats.Dot(l.s[idx], dir)
 | |
| 		floats.AddScaled(dir, -l.a[idx], l.y[idx])
 | |
| 	}
 | |
| 
 | |
| 	// Scale the initial Hessian.
 | |
| 	gamma := sDotY / floats.Dot(y, y)
 | |
| 	floats.Scale(gamma, dir)
 | |
| 
 | |
| 	// Start with the oldest element and go forward.
 | |
| 	for i := 0; i < l.Store; i++ {
 | |
| 		idx := i + l.oldest
 | |
| 		if idx >= l.Store {
 | |
| 			idx -= l.Store
 | |
| 		}
 | |
| 		beta := l.rho[idx] * floats.Dot(l.y[idx], dir)
 | |
| 		floats.AddScaled(dir, l.a[idx]-beta, l.s[idx])
 | |
| 	}
 | |
| 
 | |
| 	// dir contains H^{-1} * g, so flip the direction for minimization.
 | |
| 	floats.Scale(-1, dir)
 | |
| 
 | |
| 	return 1
 | |
| }
 | |
| 
 | |
| func (*LBFGS) Needs() struct {
 | |
| 	Gradient bool
 | |
| 	Hessian  bool
 | |
| } {
 | |
| 	return struct {
 | |
| 		Gradient bool
 | |
| 		Hessian  bool
 | |
| 	}{true, false}
 | |
| }
 | 
