mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00

This avoids the confusion between Zero() and IsZero() which sounds like they should be related to one another but are not. This makes IsEmpty the counterpart to Reset. Add check for Zero in allMatrix Fixes #1083. Updates #1081.
187 lines
5.0 KiB
Go
187 lines
5.0 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package fd
|
|
|
|
import (
|
|
"math"
|
|
"sync"
|
|
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
// Hessian approximates the Hessian matrix of the multivariate function f at
|
|
// the location x. That is
|
|
// H_{i,j} = ∂^2 f(x)/∂x_i ∂x_j
|
|
// The resulting H will be stored in dst. Finite difference formula and other
|
|
// options are specified by settings. If settings is nil, the Hessian will be
|
|
// estimated using the Forward formula and a default step size.
|
|
//
|
|
// If the dst matrix is empty it will be resized to the correct dimensions,
|
|
// otherwise the dimensions of dst must match the length of x or Hessian will panic.
|
|
// Hessian will panic if the derivative order of the formula is not 1.
|
|
func Hessian(dst *mat.SymDense, f func(x []float64) float64, x []float64, settings *Settings) {
|
|
n := len(x)
|
|
if dst.IsEmpty() {
|
|
*dst = *(dst.GrowSym(n).(*mat.SymDense))
|
|
} else if dst.Symmetric() != n {
|
|
panic("hessian: dst size mismatch")
|
|
}
|
|
dst.Zero()
|
|
|
|
// Default settings.
|
|
formula := Forward
|
|
step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
|
|
var originValue float64
|
|
var originKnown, concurrent bool
|
|
|
|
// Use user settings if provided.
|
|
if settings != nil {
|
|
if !settings.Formula.isZero() {
|
|
formula = settings.Formula
|
|
step = math.Sqrt(formula.Step)
|
|
checkFormula(formula)
|
|
if formula.Derivative != 1 {
|
|
panic(badDerivOrder)
|
|
}
|
|
}
|
|
if settings.Step != 0 {
|
|
if settings.Step < 0 {
|
|
panic(negativeStep)
|
|
}
|
|
step = settings.Step
|
|
}
|
|
originKnown = settings.OriginKnown
|
|
originValue = settings.OriginValue
|
|
concurrent = settings.Concurrent
|
|
}
|
|
|
|
evals := n * (n + 1) / 2 * len(formula.Stencil) * len(formula.Stencil)
|
|
for _, pt := range formula.Stencil {
|
|
if pt.Loc == 0 {
|
|
evals -= n * (n + 1) / 2
|
|
break
|
|
}
|
|
}
|
|
|
|
nWorkers := computeWorkers(concurrent, evals)
|
|
if nWorkers == 1 {
|
|
hessianSerial(dst, f, x, formula.Stencil, step, originKnown, originValue)
|
|
return
|
|
}
|
|
hessianConcurrent(dst, nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
|
|
}
|
|
|
|
func hessianSerial(dst *mat.SymDense, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
|
|
n := len(x)
|
|
xCopy := make([]float64, n)
|
|
fo := func() float64 {
|
|
// Copy x in case it is modified during the call.
|
|
copy(xCopy, x)
|
|
return f(x)
|
|
}
|
|
is2 := 1 / (step * step)
|
|
origin := getOrigin(originKnown, originValue, fo, stencil)
|
|
for i := 0; i < n; i++ {
|
|
for j := i; j < n; j++ {
|
|
var hess float64
|
|
for _, pti := range stencil {
|
|
for _, ptj := range stencil {
|
|
var v float64
|
|
if pti.Loc == 0 && ptj.Loc == 0 {
|
|
v = origin
|
|
} else {
|
|
// Copying the data anew has two benefits. First, it
|
|
// avoids floating point issues where adding and then
|
|
// subtracting the step don't return to the exact same
|
|
// location. Secondly, it protects against the function
|
|
// modifying the input data.
|
|
copy(xCopy, x)
|
|
xCopy[i] += pti.Loc * step
|
|
xCopy[j] += ptj.Loc * step
|
|
v = f(xCopy)
|
|
}
|
|
hess += v * pti.Coeff * ptj.Coeff * is2
|
|
}
|
|
}
|
|
dst.SetSym(i, j, hess)
|
|
}
|
|
}
|
|
}
|
|
|
|
func hessianConcurrent(dst *mat.SymDense, nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
|
|
n := dst.Symmetric()
|
|
type run struct {
|
|
i, j int
|
|
iIdx, jIdx int
|
|
result float64
|
|
}
|
|
|
|
send := make(chan run, evals)
|
|
ans := make(chan run, evals)
|
|
|
|
var originWG sync.WaitGroup
|
|
hasOrigin := usesOrigin(stencil)
|
|
if hasOrigin {
|
|
originWG.Add(1)
|
|
// Launch worker to compute the origin.
|
|
go func() {
|
|
defer originWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
copy(xCopy, x)
|
|
originValue = f(xCopy)
|
|
}()
|
|
}
|
|
|
|
var workerWG sync.WaitGroup
|
|
// Launch workers.
|
|
for i := 0; i < nWorkers; i++ {
|
|
workerWG.Add(1)
|
|
go func(send <-chan run, ans chan<- run) {
|
|
defer workerWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
for r := range send {
|
|
if stencil[r.iIdx].Loc == 0 && stencil[r.jIdx].Loc == 0 {
|
|
originWG.Wait()
|
|
r.result = originValue
|
|
} else {
|
|
// See hessianSerial for comment on the copy.
|
|
copy(xCopy, x)
|
|
xCopy[r.i] += stencil[r.iIdx].Loc * step
|
|
xCopy[r.j] += stencil[r.jIdx].Loc * step
|
|
r.result = f(xCopy)
|
|
}
|
|
ans <- r
|
|
}
|
|
}(send, ans)
|
|
}
|
|
|
|
// Launch the distributor, which sends all of runs.
|
|
go func(send chan<- run) {
|
|
for i := 0; i < n; i++ {
|
|
for j := i; j < n; j++ {
|
|
for iIdx := range stencil {
|
|
for jIdx := range stencil {
|
|
send <- run{
|
|
i: i, j: j, iIdx: iIdx, jIdx: jIdx,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
close(send)
|
|
// Wait for all the workers to quit, then close the ans channel.
|
|
workerWG.Wait()
|
|
close(ans)
|
|
}(send)
|
|
|
|
is2 := 1 / (step * step)
|
|
// Read in the results.
|
|
for r := range ans {
|
|
v := r.result * stencil[r.iIdx].Coeff * stencil[r.jIdx].Coeff * is2
|
|
v += dst.At(r.i, r.j)
|
|
dst.SetSym(r.i, r.j, v)
|
|
}
|
|
}
|