mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 15:47:01 +08:00
198 lines
5.2 KiB
Go
198 lines
5.2 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package path
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/internal/linear"
|
|
)
|
|
|
|
// BellmanFordFrom returns a shortest-path tree for a shortest path from u to all nodes in
|
|
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
|
|
// does not implement Weighted, UniformCost is used.
|
|
//
|
|
// The time complexity of BellmanFordFrom is O(|V|.|E|).
|
|
func BellmanFordFrom(u graph.Node, g graph.Graph) (path Shortest, ok bool) {
|
|
if g.Node(u.ID()) == nil {
|
|
return Shortest{from: u}, true
|
|
}
|
|
var weight Weighting
|
|
if wg, ok := g.(Weighted); ok {
|
|
weight = wg.Weight
|
|
} else {
|
|
weight = UniformCost(g)
|
|
}
|
|
|
|
nodes := graph.NodesOf(g.Nodes())
|
|
|
|
path = newShortestFrom(u, nodes)
|
|
path.dist[path.indexOf[u.ID()]] = 0
|
|
path.negCosts = make(map[negEdge]float64)
|
|
|
|
// Queue to keep track which nodes need to be relaxed.
|
|
// Only nodes whose vertex distance changed in the previous iterations
|
|
// need to be relaxed again.
|
|
queue := newBellmanFordQueue(path.indexOf)
|
|
queue.enqueue(u)
|
|
|
|
// The maximum number of edges in a graph is |V| * (|V|-1) which is also
|
|
// the worst case complexity.
|
|
// If the queue-loop has more iterations than the amount of maximum edges
|
|
// it indicates that we have a negative cycle.
|
|
maxEdges := len(nodes) * (len(nodes) - 1)
|
|
var loops int
|
|
|
|
// TODO(kortschak): Consider adding further optimisations
|
|
// from http://arxiv.org/abs/1111.5414.
|
|
for queue.len() != 0 {
|
|
u := queue.dequeue()
|
|
uid := u.ID()
|
|
j := path.indexOf[uid]
|
|
|
|
to := g.From(uid)
|
|
for to.Next() {
|
|
v := to.Node()
|
|
vid := v.ID()
|
|
k := path.indexOf[vid]
|
|
w, ok := weight(uid, vid)
|
|
if !ok {
|
|
panic("bellman-ford: unexpected invalid weight")
|
|
}
|
|
|
|
joint := path.dist[j] + w
|
|
if joint < path.dist[k] {
|
|
path.set(k, joint, j)
|
|
|
|
if !queue.has(vid) {
|
|
queue.enqueue(v)
|
|
}
|
|
}
|
|
}
|
|
|
|
if loops > maxEdges {
|
|
path.hasNegativeCycle = true
|
|
return path, false
|
|
}
|
|
loops++
|
|
}
|
|
|
|
return path, true
|
|
}
|
|
|
|
// BellmanFordAllFrom returns a shortest-path tree for shortest paths from u to all nodes in
|
|
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
|
|
// does not implement Weighted, UniformCost is used.
|
|
//
|
|
// The time complexity of BellmanFordAllFrom is O(|V|.|E|).
|
|
func BellmanFordAllFrom(u graph.Node, g graph.Graph) (path ShortestAlts, ok bool) {
|
|
if g.Node(u.ID()) == nil {
|
|
return ShortestAlts{from: u}, true
|
|
}
|
|
var weight Weighting
|
|
if wg, ok := g.(Weighted); ok {
|
|
weight = wg.Weight
|
|
} else {
|
|
weight = UniformCost(g)
|
|
}
|
|
|
|
nodes := graph.NodesOf(g.Nodes())
|
|
|
|
path = newShortestAltsFrom(u, nodes)
|
|
path.dist[path.indexOf[u.ID()]] = 0
|
|
path.negCosts = make(map[negEdge]float64)
|
|
|
|
// Queue to keep track which nodes need to be relaxed.
|
|
// Only nodes whose vertex distance changed in the previous iterations
|
|
// need to be relaxed again.
|
|
queue := newBellmanFordQueue(path.indexOf)
|
|
queue.enqueue(u)
|
|
|
|
// The maximum number of edges in a graph is |V| * (|V|-1) which is also
|
|
// the worst case complexity.
|
|
// If the queue-loop has more iterations than the amount of maximum edges
|
|
// it indicates that we have a negative cycle.
|
|
maxEdges := len(nodes) * (len(nodes) - 1)
|
|
var loops int
|
|
|
|
// TODO(kortschak): Consider adding further optimisations
|
|
// from http://arxiv.org/abs/1111.5414.
|
|
for queue.len() != 0 {
|
|
u := queue.dequeue()
|
|
uid := u.ID()
|
|
j := path.indexOf[uid]
|
|
|
|
for _, v := range graph.NodesOf(g.From(uid)) {
|
|
vid := v.ID()
|
|
k := path.indexOf[vid]
|
|
w, ok := weight(uid, vid)
|
|
if !ok {
|
|
panic("bellman-ford: unexpected invalid weight")
|
|
}
|
|
|
|
joint := path.dist[j] + w
|
|
if joint < path.dist[k] {
|
|
path.set(k, joint, j)
|
|
|
|
if !queue.has(vid) {
|
|
queue.enqueue(v)
|
|
}
|
|
} else if joint == path.dist[k] {
|
|
path.addPath(k, j)
|
|
}
|
|
}
|
|
|
|
if loops > maxEdges {
|
|
path.hasNegativeCycle = true
|
|
return path, false
|
|
}
|
|
loops++
|
|
}
|
|
|
|
return path, true
|
|
}
|
|
|
|
// bellmanFordQueue is a queue for the Queue-based Bellman-Ford algorithm.
|
|
type bellmanFordQueue struct {
|
|
// queue holds the nodes which need to be relaxed.
|
|
queue linear.NodeQueue
|
|
|
|
// onQueue keeps track whether a node is on the queue or not.
|
|
onQueue []bool
|
|
|
|
// indexOf contains a mapping holding the id of a node with its index in the onQueue array.
|
|
indexOf map[int64]int
|
|
}
|
|
|
|
// enqueue adds a node to the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) enqueue(n graph.Node) {
|
|
i := q.indexOf[n.ID()]
|
|
if q.onQueue[i] {
|
|
panic("bellman-ford: already queued")
|
|
}
|
|
q.onQueue[i] = true
|
|
q.queue.Enqueue(n)
|
|
}
|
|
|
|
// dequeue returns the first value of the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) dequeue() graph.Node {
|
|
n := q.queue.Dequeue()
|
|
q.onQueue[q.indexOf[n.ID()]] = false
|
|
return n
|
|
}
|
|
|
|
// len returns the number of nodes in the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) len() int { return q.queue.Len() }
|
|
|
|
// has returns whether a node with the given id is in the queue.
|
|
func (q bellmanFordQueue) has(id int64) bool { return q.onQueue[q.indexOf[id]] }
|
|
|
|
// newBellmanFordQueue creates a new bellmanFordQueue.
|
|
func newBellmanFordQueue(indexOf map[int64]int) bellmanFordQueue {
|
|
return bellmanFordQueue{
|
|
onQueue: make([]bool, len(indexOf)),
|
|
indexOf: indexOf,
|
|
}
|
|
}
|