Files
gonum/graph/layout/eades.go
Dan Kortschak 142f1a8c6b graph: make graph analysis routines safe for indeterminate iterators
This is a change in design for the graph.NodesOf family of functions. The
alternative was to provide an equivalent set of non-panicking routines in
graph for internal use. The protection that was intended with the panic
was to panic early rather than late when an indeterminate iterator exhausts
slice index space. I think in hindsight this was an error and we should
let things blow up in that (likely rare) situation.

The majority of changes are in test code. Outside the iterator package, which
is intimately tied to the determined iterator implementations, only one test
now fails if an indeterminate iterator is used, product's Modular extended
sub-graph isomorphism example, which is an algorithm that would have time
complexity issues with large iterators anyway.
2020-07-02 07:47:46 +09:30

177 lines
4.1 KiB
Go

// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package layout
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/spatial/barneshut"
"gonum.org/v1/gonum/spatial/r2"
)
// EadesR2 implements the graph layout algorithm essentially as
// described in "A heuristic for graph drawing", Congressus
// numerantium 42:149-160.
// The implementation here uses the Barnes-Hut approximation for
// global repulsion calculation, and edge weights are considered
// when calculating adjacent node attraction.
type EadesR2 struct {
// Updates is the number of updates to perform.
Updates int
// Repulsion is the strength of the global
// repulsive force between nodes in the
// layout. It corresponds to C3 in the paper.
Repulsion float64
// Rate is the gradient descent rate. It
// corresponds to C4 in the paper.
Rate float64
// Theta is the Barnes-Hut theta constant.
Theta float64
// Src is the source of randomness used
// to initialize the nodes' locations. If
// Src is nil, the global random number
// generator is used.
Src rand.Source
nodes graph.Nodes
indexOf map[int64]int
particles []barneshut.Particle2
forces []r2.Vec
}
// Update is the EadesR2 spatial graph update function.
func (u *EadesR2) Update(g graph.Graph, layout LayoutR2) bool {
if u.Updates <= 0 {
return false
}
u.Updates--
if !layout.IsInitialized() {
var rnd func() float64
if u.Src == nil {
rnd = rand.Float64
} else {
rnd = rand.New(u.Src).Float64
}
u.nodes = g.Nodes()
u.indexOf = make(map[int64]int, u.nodes.Len())
if u.nodes.Len() >= 0 {
u.particles = make([]barneshut.Particle2, 0, u.nodes.Len())
}
for u.nodes.Next() {
id := u.nodes.Node().ID()
u.indexOf[id] = len(u.particles)
u.particles = append(u.particles, eadesR2Node{id: id, pos: r2.Vec{X: rnd(), Y: rnd()}})
}
u.forces = make([]r2.Vec, len(u.particles))
}
u.nodes.Reset()
// Apply global repulsion.
plane, err := barneshut.NewPlane(u.particles)
if err != nil {
return false
}
var updated bool
for i, p := range u.particles {
f := plane.ForceOn(p, u.Theta, barneshut.Gravity2).Scale(-u.Repulsion)
// Prevent marginal updates that can be caused by
// floating point error when nodes are very far apart.
if math.Hypot(f.X, f.Y) > 1e-12 {
updated = true
}
u.forces[i] = f
}
// Handle edge weighting for attraction.
var weight func(uid, vid int64) float64
if wg, ok := g.(graph.Weighted); ok {
if _, ok := g.(graph.Directed); ok {
weight = func(xid, yid int64) float64 {
var w float64
f, ok := wg.Weight(xid, yid)
if ok {
w += f
}
r, ok := wg.Weight(yid, xid)
if ok {
w += r
}
return w
}
} else {
weight = func(xid, yid int64) float64 {
w, ok := wg.Weight(xid, yid)
if ok {
return w
}
return 0
}
}
} else {
// This is only called when the adjacency is known so just return unit.
weight = func(_, _ int64) float64 { return 1 }
}
seen := make(map[[2]int64]bool)
for u.nodes.Next() {
xid := u.nodes.Node().ID()
xidx := u.indexOf[xid]
to := g.From(xid)
for to.Next() {
yid := to.Node().ID()
if seen[[2]int64{xid, yid}] {
continue
}
seen[[2]int64{yid, xid}] = true
yidx := u.indexOf[yid]
// Apply adjacent node attraction.
v := u.particles[yidx].Coord2().Sub(u.particles[xidx].Coord2())
f := v.Scale(weight(xid, yid) * math.Log(math.Hypot(v.X, v.Y)))
if math.IsInf(f.X, 0) || math.IsInf(f.Y, 0) {
return false
}
if math.Hypot(f.X, f.Y) > 1e-12 {
updated = true
}
u.forces[xidx] = u.forces[xidx].Add(f)
u.forces[yidx] = u.forces[yidx].Sub(f)
}
}
if !updated {
return false
}
rate := u.Rate
if rate == 0 {
rate = 0.1
}
for i, f := range u.forces {
n := u.particles[i].(eadesR2Node)
n.pos = n.pos.Add(f.Scale(rate))
u.particles[i] = n
layout.SetCoord2(n.id, n.pos)
}
return true
}
type eadesR2Node struct {
id int64
pos r2.Vec
}
func (p eadesR2Node) Coord2() r2.Vec { return p.pos }
func (p eadesR2Node) Mass() float64 { return 1 }