mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00

* optimize: Change initialization, remove Needser, and update Problem function calls We need a better way to express the Hessian function call so that sparse Hessians can be provided. This change updates the Problem function definitions to allow an arbitrary Symmetric matrix. With this change, we need to change how Location is used, so that we do not allocate a SymDense. Once this location is changed, we no longer need Needser to allocate the appropriate memory, and can shift that to initialization, further simplifying the interfaces. A 'fake' Problem is passed to Method to continue to make it impossible for the Method to call the functions directly. Fixes #727, #593.
257 lines
6.8 KiB
Go
257 lines
6.8 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package functions
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
)
|
||
|
||
// MinimalSurface implements a finite element approximation to a minimal
|
||
// surface problem: determine the surface with minimal area and given boundary
|
||
// values in a unit square centered at the origin.
|
||
//
|
||
// References:
|
||
// Averick, M.B., Carter, R.G., Moré, J.J., Xue, G.-L.: The Minpack-2 Test
|
||
// Problem Collection. Preprint MCS-P153-0692, Argonne National Laboratory (1992)
|
||
type MinimalSurface struct {
|
||
bottom, top []float64
|
||
left, right []float64
|
||
origin, step [2]float64
|
||
}
|
||
|
||
// NewMinimalSurface creates a new discrete minimal surface problem and
|
||
// precomputes its boundary values. The problem is discretized on a rectilinear
|
||
// grid with nx×ny nodes which means that the problem dimension is (nx-2)(ny-2).
|
||
func NewMinimalSurface(nx, ny int) *MinimalSurface {
|
||
ms := &MinimalSurface{
|
||
bottom: make([]float64, nx),
|
||
top: make([]float64, nx),
|
||
left: make([]float64, ny),
|
||
right: make([]float64, ny),
|
||
origin: [2]float64{-0.5, -0.5},
|
||
step: [2]float64{1 / float64(nx-1), 1 / float64(ny-1)},
|
||
}
|
||
|
||
ms.initBoundary(ms.bottom, ms.origin[0], ms.origin[1], ms.step[0], 0)
|
||
startY := ms.origin[1] + float64(ny-1)*ms.step[1]
|
||
ms.initBoundary(ms.top, ms.origin[0], startY, ms.step[0], 0)
|
||
ms.initBoundary(ms.left, ms.origin[0], ms.origin[1], 0, ms.step[1])
|
||
startX := ms.origin[0] + float64(nx-1)*ms.step[0]
|
||
ms.initBoundary(ms.right, startX, ms.origin[1], 0, ms.step[1])
|
||
|
||
return ms
|
||
}
|
||
|
||
// Func returns the area of the surface represented by the vector x.
|
||
func (ms *MinimalSurface) Func(x []float64) (area float64) {
|
||
nx, ny := ms.Dims()
|
||
if len(x) != (nx-2)*(ny-2) {
|
||
panic("functions: problem size mismatch")
|
||
}
|
||
|
||
hx, hy := ms.Steps()
|
||
for j := 0; j < ny-1; j++ {
|
||
for i := 0; i < nx-1; i++ {
|
||
vLL := ms.at(i, j, x)
|
||
vLR := ms.at(i+1, j, x)
|
||
vUL := ms.at(i, j+1, x)
|
||
vUR := ms.at(i+1, j+1, x)
|
||
|
||
dvLdx := (vLR - vLL) / hx
|
||
dvLdy := (vUL - vLL) / hy
|
||
dvUdx := (vUR - vUL) / hx
|
||
dvUdy := (vUR - vLR) / hy
|
||
|
||
fL := math.Sqrt(1 + dvLdx*dvLdx + dvLdy*dvLdy)
|
||
fU := math.Sqrt(1 + dvUdx*dvUdx + dvUdy*dvUdy)
|
||
area += fL + fU
|
||
}
|
||
}
|
||
area *= 0.5 * hx * hy
|
||
return area
|
||
}
|
||
|
||
// Grad evaluates the area gradient of the surface represented by the vector.
|
||
func (ms *MinimalSurface) Grad(grad, x []float64) []float64 {
|
||
nx, ny := ms.Dims()
|
||
if len(x) != (nx-2)*(ny-2) {
|
||
panic("functions: problem size mismatch")
|
||
}
|
||
if grad == nil {
|
||
grad = make([]float64, len(x))
|
||
}
|
||
if len(x) != len(grad) {
|
||
panic("functions: unexpected size mismatch")
|
||
}
|
||
|
||
for i := range grad {
|
||
grad[i] = 0
|
||
}
|
||
hx, hy := ms.Steps()
|
||
for j := 0; j < ny-1; j++ {
|
||
for i := 0; i < nx-1; i++ {
|
||
vLL := ms.at(i, j, x)
|
||
vLR := ms.at(i+1, j, x)
|
||
vUL := ms.at(i, j+1, x)
|
||
vUR := ms.at(i+1, j+1, x)
|
||
|
||
dvLdx := (vLR - vLL) / hx
|
||
dvLdy := (vUL - vLL) / hy
|
||
dvUdx := (vUR - vUL) / hx
|
||
dvUdy := (vUR - vLR) / hy
|
||
|
||
fL := math.Sqrt(1 + dvLdx*dvLdx + dvLdy*dvLdy)
|
||
fU := math.Sqrt(1 + dvUdx*dvUdx + dvUdy*dvUdy)
|
||
|
||
if grad != nil {
|
||
if i > 0 {
|
||
if j > 0 {
|
||
grad[ms.index(i, j)] -= (dvLdx/hx + dvLdy/hy) / fL
|
||
}
|
||
if j < ny-2 {
|
||
grad[ms.index(i, j+1)] += (dvLdy/hy)/fL - (dvUdx/hx)/fU
|
||
}
|
||
}
|
||
if i < nx-2 {
|
||
if j > 0 {
|
||
grad[ms.index(i+1, j)] += (dvLdx/hx)/fL - (dvUdy/hy)/fU
|
||
}
|
||
if j < ny-2 {
|
||
grad[ms.index(i+1, j+1)] += (dvUdx/hx + dvUdy/hy) / fU
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|
||
cellSize := 0.5 * hx * hy
|
||
for i := range grad {
|
||
grad[i] *= cellSize
|
||
}
|
||
return grad
|
||
}
|
||
|
||
// InitX returns a starting location for the minimization problem. Length of
|
||
// the returned slice is (nx-2)(ny-2).
|
||
func (ms *MinimalSurface) InitX() []float64 {
|
||
nx, ny := ms.Dims()
|
||
x := make([]float64, (nx-2)*(ny-2))
|
||
for j := 1; j < ny-1; j++ {
|
||
for i := 1; i < nx-1; i++ {
|
||
x[ms.index(i, j)] = (ms.left[j] + ms.bottom[i]) / 2
|
||
}
|
||
}
|
||
return x
|
||
}
|
||
|
||
// ExactX returns the exact solution to the _continuous_ minimization problem
|
||
// projected on the interior nodes of the grid. Length of the returned slice is
|
||
// (nx-2)(ny-2).
|
||
func (ms *MinimalSurface) ExactX() []float64 {
|
||
nx, ny := ms.Dims()
|
||
v := make([]float64, (nx-2)*(ny-2))
|
||
for j := 1; j < ny-1; j++ {
|
||
for i := 1; i < nx-1; i++ {
|
||
v[ms.index(i, j)] = ms.ExactSolution(ms.x(i), ms.y(j))
|
||
}
|
||
}
|
||
return v
|
||
}
|
||
|
||
// ExactSolution returns the value of the exact solution to the minimal surface
|
||
// problem at (x,y). The exact solution is
|
||
// F_exact(x,y) = U^2(x,y) - V^2(x,y),
|
||
// where U and V are the unique solutions to the equations
|
||
// x = u + uv^2 - u^3/3,
|
||
// y = -v - u^2v + v^3/3.
|
||
func (ms *MinimalSurface) ExactSolution(x, y float64) float64 {
|
||
var u = [2]float64{x, -y}
|
||
var f [2]float64
|
||
var jac [2][2]float64
|
||
for k := 0; k < 100; k++ {
|
||
f[0] = u[0] + u[0]*u[1]*u[1] - u[0]*u[0]*u[0]/3 - x
|
||
f[1] = -u[1] - u[0]*u[0]*u[1] + u[1]*u[1]*u[1]/3 - y
|
||
fNorm := math.Hypot(f[0], f[1])
|
||
if fNorm < 1e-13 {
|
||
break
|
||
}
|
||
jac[0][0] = 1 + u[1]*u[1] - u[0]*u[0]
|
||
jac[0][1] = 2 * u[0] * u[1]
|
||
jac[1][0] = -2 * u[0] * u[1]
|
||
jac[1][1] = -1 - u[0]*u[0] + u[1]*u[1]
|
||
det := jac[0][0]*jac[1][1] - jac[0][1]*jac[1][0]
|
||
u[0] -= (jac[1][1]*f[0] - jac[0][1]*f[1]) / det
|
||
u[1] -= (jac[0][0]*f[1] - jac[1][0]*f[0]) / det
|
||
}
|
||
return u[0]*u[0] - u[1]*u[1]
|
||
}
|
||
|
||
// Dims returns the size of the underlying rectilinear grid.
|
||
func (ms *MinimalSurface) Dims() (nx, ny int) {
|
||
return len(ms.bottom), len(ms.left)
|
||
}
|
||
|
||
// Steps returns the spatial step sizes of the underlying rectilinear grid.
|
||
func (ms *MinimalSurface) Steps() (hx, hy float64) {
|
||
return ms.step[0], ms.step[1]
|
||
}
|
||
|
||
func (ms *MinimalSurface) x(i int) float64 {
|
||
return ms.origin[0] + float64(i)*ms.step[0]
|
||
}
|
||
|
||
func (ms *MinimalSurface) y(j int) float64 {
|
||
return ms.origin[1] + float64(j)*ms.step[1]
|
||
}
|
||
|
||
func (ms *MinimalSurface) at(i, j int, x []float64) float64 {
|
||
nx, ny := ms.Dims()
|
||
if i < 0 || i >= nx {
|
||
panic(fmt.Sprintf("node [%v,%v] not on grid", i, j))
|
||
}
|
||
if j < 0 || j >= ny {
|
||
panic(fmt.Sprintf("node [%v,%v] not on grid", i, j))
|
||
}
|
||
|
||
if i == 0 {
|
||
return ms.left[j]
|
||
}
|
||
if j == 0 {
|
||
return ms.bottom[i]
|
||
}
|
||
if i == nx-1 {
|
||
return ms.right[j]
|
||
}
|
||
if j == ny-1 {
|
||
return ms.top[i]
|
||
}
|
||
return x[ms.index(i, j)]
|
||
}
|
||
|
||
// index maps an interior grid node (i, j) to a one-dimensional index and
|
||
// returns it.
|
||
func (ms *MinimalSurface) index(i, j int) int {
|
||
nx, ny := ms.Dims()
|
||
if i <= 0 || i >= nx-1 {
|
||
panic(fmt.Sprintf("[%v,%v] is not an interior node", i, j))
|
||
}
|
||
if j <= 0 || j >= ny-1 {
|
||
panic(fmt.Sprintf("[%v,%v] is not an interior node", i, j))
|
||
}
|
||
|
||
return i - 1 + (j-1)*(nx-2)
|
||
}
|
||
|
||
// initBoundary initializes with the exact solution the boundary b whose i-th
|
||
// element b[i] is located at [startX+i×hx, startY+i×hy].
|
||
func (ms *MinimalSurface) initBoundary(b []float64, startX, startY, hx, hy float64) {
|
||
for i := range b {
|
||
x := startX + float64(i)*hx
|
||
y := startY + float64(i)*hy
|
||
b[i] = ms.ExactSolution(x, y)
|
||
}
|
||
}
|