mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2019 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package testblas
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math/cmplx"
 | |
| 	"testing"
 | |
| 
 | |
| 	"golang.org/x/exp/rand"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/blas"
 | |
| )
 | |
| 
 | |
| type Zherker interface {
 | |
| 	Zherk(uplo blas.Uplo, trans blas.Transpose, n, k int, alpha float64, a []complex128, lda int, beta float64, c []complex128, ldc int)
 | |
| }
 | |
| 
 | |
| func ZherkTest(t *testing.T, impl Zherker) {
 | |
| 	for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
 | |
| 		for _, trans := range []blas.Transpose{blas.NoTrans, blas.ConjTrans} {
 | |
| 			name := uploString(uplo) + "-" + transString(trans)
 | |
| 			t.Run(name, func(t *testing.T) {
 | |
| 				for _, n := range []int{0, 1, 2, 3, 4, 5} {
 | |
| 					for _, k := range []int{0, 1, 2, 3, 4, 5, 7} {
 | |
| 						zherkTest(t, impl, uplo, trans, n, k)
 | |
| 					}
 | |
| 				}
 | |
| 			})
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func zherkTest(t *testing.T, impl Zherker, uplo blas.Uplo, trans blas.Transpose, n, k int) {
 | |
| 	const tol = 1e-13
 | |
| 
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 
 | |
| 	rowA, colA := n, k
 | |
| 	if trans == blas.ConjTrans {
 | |
| 		rowA, colA = k, n
 | |
| 	}
 | |
| 	for _, lda := range []int{max(1, colA), colA + 2} {
 | |
| 		for _, ldc := range []int{max(1, n), n + 4} {
 | |
| 			for _, alpha := range []float64{0, 1, 0.7} {
 | |
| 				for _, beta := range []float64{0, 1, 1.3} {
 | |
| 					// Allocate the matrix A and fill it with random numbers.
 | |
| 					a := make([]complex128, rowA*lda)
 | |
| 					for i := range a {
 | |
| 						a[i] = rndComplex128(rnd)
 | |
| 					}
 | |
| 					// Create a copy of A for checking that
 | |
| 					// Zherk does not modify A.
 | |
| 					aCopy := make([]complex128, len(a))
 | |
| 					copy(aCopy, a)
 | |
| 
 | |
| 					// Allocate the matrix C and fill it with random numbers.
 | |
| 					c := make([]complex128, n*ldc)
 | |
| 					for i := range c {
 | |
| 						c[i] = rndComplex128(rnd)
 | |
| 					}
 | |
| 					if (alpha == 0 || k == 0) && beta == 1 {
 | |
| 						// In case of a quick return
 | |
| 						// zero out the diagonal.
 | |
| 						for i := 0; i < n; i++ {
 | |
| 							c[i*ldc+i] = complex(real(c[i*ldc+i]), 0)
 | |
| 						}
 | |
| 					}
 | |
| 					// Create a copy of C for checking that
 | |
| 					// Zherk does not modify its triangle
 | |
| 					// opposite to uplo.
 | |
| 					cCopy := make([]complex128, len(c))
 | |
| 					copy(cCopy, c)
 | |
| 					// Create a copy of C expanded into a
 | |
| 					// full hermitian matrix for computing
 | |
| 					// the expected result using zmm.
 | |
| 					cHer := make([]complex128, len(c))
 | |
| 					copy(cHer, c)
 | |
| 					if uplo == blas.Upper {
 | |
| 						for i := 0; i < n; i++ {
 | |
| 							cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0)
 | |
| 							for j := i + 1; j < n; j++ {
 | |
| 								cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j])
 | |
| 							}
 | |
| 						}
 | |
| 					} else {
 | |
| 						for i := 0; i < n; i++ {
 | |
| 							for j := 0; j < i; j++ {
 | |
| 								cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j])
 | |
| 							}
 | |
| 							cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0)
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					// Compute the expected result using an internal Zgemm implementation.
 | |
| 					var want []complex128
 | |
| 					if trans == blas.NoTrans {
 | |
| 						want = zmm(blas.NoTrans, blas.ConjTrans, n, n, k, complex(alpha, 0), a, lda, a, lda, complex(beta, 0), cHer, ldc)
 | |
| 					} else {
 | |
| 						want = zmm(blas.ConjTrans, blas.NoTrans, n, n, k, complex(alpha, 0), a, lda, a, lda, complex(beta, 0), cHer, ldc)
 | |
| 					}
 | |
| 
 | |
| 					// Compute the result using Zherk.
 | |
| 					impl.Zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
 | |
| 
 | |
| 					prefix := fmt.Sprintf("n=%v,k=%v,lda=%v,ldc=%v,alpha=%v,beta=%v", n, k, lda, ldc, alpha, beta)
 | |
| 
 | |
| 					if !zsame(a, aCopy) {
 | |
| 						t.Errorf("%v: unexpected modification of A", prefix)
 | |
| 						continue
 | |
| 					}
 | |
| 					if uplo == blas.Upper && !zSameLowerTri(n, c, ldc, cCopy, ldc) {
 | |
| 						t.Errorf("%v: unexpected modification in lower triangle of C", prefix)
 | |
| 						continue
 | |
| 					}
 | |
| 					if uplo == blas.Lower && !zSameUpperTri(n, c, ldc, cCopy, ldc) {
 | |
| 						t.Errorf("%v: unexpected modification in upper triangle of C", prefix)
 | |
| 						continue
 | |
| 					}
 | |
| 
 | |
| 					// Check that the diagonal of C has only real elements.
 | |
| 					hasRealDiag := true
 | |
| 					for i := 0; i < n; i++ {
 | |
| 						if imag(c[i*ldc+i]) != 0 {
 | |
| 							hasRealDiag = false
 | |
| 							break
 | |
| 						}
 | |
| 					}
 | |
| 					if !hasRealDiag {
 | |
| 						t.Errorf("%v: diagonal of C has imaginary elements\ngot=%v", prefix, c)
 | |
| 						continue
 | |
| 					}
 | |
| 
 | |
| 					// Expand C into a full hermitian matrix
 | |
| 					// for comparison with the result from zmm.
 | |
| 					if uplo == blas.Upper {
 | |
| 						for i := 0; i < n-1; i++ {
 | |
| 							for j := i + 1; j < n; j++ {
 | |
| 								c[j*ldc+i] = cmplx.Conj(c[i*ldc+j])
 | |
| 							}
 | |
| 						}
 | |
| 					} else {
 | |
| 						for i := 1; i < n; i++ {
 | |
| 							for j := 0; j < i; j++ {
 | |
| 								c[j*ldc+i] = cmplx.Conj(c[i*ldc+j])
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 					if !zEqualApprox(c, want, tol) {
 | |
| 						t.Errorf("%v: unexpected result\nwant=%v\ngot= %v", prefix, want, c)
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | 
