Files
gonum/lapack/testlapack/dgesvd.go

380 lines
13 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"sort"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dgesvder interface {
Dgesvd(jobU, jobVT lapack.SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool)
}
func DgesvdTest(t *testing.T, impl Dgesvder, tol float64) {
for _, m := range []int{0, 1, 2, 3, 4, 5, 10, 150, 300} {
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 150} {
for _, mtype := range []int{1, 2, 3, 4, 5} {
dgesvdTest(t, impl, m, n, mtype, tol)
}
}
}
}
// dgesvdTest tests a Dgesvd implementation on an m×n matrix A generated
// according to mtype as:
// - the zero matrix if mtype == 1,
// - the identity matrix if mtype == 2,
// - a random matrix with a given condition number and singular values if mtype == 3, 4, or 5.
// It first computes the full SVD A = U*Sigma*Vᵀ and checks that
// - U has orthonormal columns, and Vᵀ has orthonormal rows,
// - U*Sigma*Vᵀ multiply back to A,
// - the singular values are non-negative and sorted in decreasing order.
// Then all combinations of partial SVD results are computed and checked whether
// they match the full SVD result.
func dgesvdTest(t *testing.T, impl Dgesvder, m, n, mtype int, tol float64) {
const tolOrtho = 1e-15
rnd := rand.New(rand.NewSource(1))
// Use a fixed leading dimension to reduce testing time.
lda := n + 3
ldu := m + 5
ldvt := n + 7
minmn := min(m, n)
// Allocate A and fill it with random values. The in-range elements will
// be overwritten below according to mtype.
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
var aNorm float64
switch mtype {
default:
panic("unknown test matrix type")
case 1:
// Zero matrix.
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
}
aNorm = 0
case 2:
// Identity matrix.
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i == j {
a[i*lda+i] = 1
} else {
a[i*lda+j] = 0
}
}
}
aNorm = 1
case 3, 4, 5:
// Scaled random matrix.
// Generate singular values.
s := make([]float64, minmn)
Dlatm1(s,
4, // s[i] = 1 - i*(1-1/cond)/(minmn-1)
float64(max(1, minmn)), // where cond = max(1,minmn)
false, // signs of s[i] are not randomly flipped
1, rnd) // random numbers are drawn uniformly from [0,1)
// Decide scale factor for the singular values based on the matrix type.
ulp := dlamchP
unfl := dlamchS
ovfl := 1 / unfl
aNorm = 1
if mtype == 4 {
aNorm = unfl / ulp
}
if mtype == 5 {
aNorm = ovfl * ulp
}
// Scale singular values so that the maximum singular value is
// equal to aNorm (we know that the singular values are
// generated above to be spread linearly between 1/cond and 1).
floats.Scale(aNorm, s)
// Generate A by multiplying S by random orthogonal matrices
// from left and right.
Dlagge(m, n, max(0, m-1), max(0, n-1), s, a, lda, rnd, make([]float64, m+n))
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
// Restore A because Dgesvd overwrites it.
copy(a, aCopy)
// Allocate slices that will be used below to store the results of full
// SVD and fill them.
uAll := make([]float64, m*ldu)
for i := range uAll {
uAll[i] = rnd.NormFloat64()
}
vtAll := make([]float64, n*ldvt)
for i := range vtAll {
vtAll[i] = rnd.NormFloat64()
}
sAll := make([]float64, min(m, n))
for i := range sAll {
sAll[i] = math.NaN()
}
prefix := fmt.Sprintf("m=%v,n=%v,work=%v,mtype=%v", m, n, wl, mtype)
// Determine workspace size based on wl.
minwork := max(1, max(5*min(m, n), 3*min(m, n)+max(m, n)))
var lwork int
switch wl {
case minimumWork:
lwork = minwork
case mediumWork:
work := make([]float64, 1)
impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
lwork = (int(work[0]) + minwork) / 2
case optimumWork:
work := make([]float64, 1)
impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
lwork = int(work[0])
}
work := make([]float64, max(1, lwork))
for i := range work {
work[i] = math.NaN()
}
// Compute the full SVD which will be used later for checking the partial results.
ok := impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, len(work))
if !ok {
t.Fatalf("Case %v: unexpected failure in full SVD", prefix)
}
// Check that uAll, sAll, and vtAll multiply back to A by computing a residual
// |A - U*S*VT| / (n*aNorm)
if resid := svdFullResidual(m, n, aNorm, aCopy, lda, uAll, ldu, sAll, vtAll, ldvt); resid > tol {
t.Errorf("Case %v: original matrix not recovered for full SVD, |A - U*D*VT|=%v", prefix, resid)
}
if minmn > 0 {
// Check that uAll is orthogonal.
q := blas64.General{Rows: m, Cols: m, Data: uAll, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: UAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
// Check that vtAll is orthogonal.
q = blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: VTAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
}
// Check that singular values are decreasing.
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(sAll))) {
t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
}
// Check that singular values are non-negative.
if minmn > 0 && floats.Min(sAll) < 0 {
t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
}
// Do partial SVD and compare the results to sAll, uAll, and vtAll.
for _, jobU := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
for _, jobVT := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
if jobU == lapack.SVDOverwrite || jobVT == lapack.SVDOverwrite {
// Not implemented.
continue
}
if jobU == lapack.SVDAll && jobVT == lapack.SVDAll {
// Already checked above.
continue
}
prefix := prefix + ",job=" + svdJobString(jobU) + "U-" + svdJobString(jobVT) + "VT"
// Restore A to its original values.
copy(a, aCopy)
// Allocate slices for the results of partial SVD and fill them.
u := make([]float64, m*ldu)
for i := range u {
u[i] = rnd.NormFloat64()
}
vt := make([]float64, n*ldvt)
for i := range vt {
vt[i] = rnd.NormFloat64()
}
s := make([]float64, min(m, n))
for i := range s {
s[i] = math.NaN()
}
for i := range work {
work[i] = math.NaN()
}
ok := impl.Dgesvd(jobU, jobVT, m, n, a, lda, s, u, ldu, vt, ldvt, work, len(work))
if !ok {
t.Fatalf("Case %v: unexpected failure in partial Dgesvd", prefix)
}
if minmn == 0 {
// No panic and the result is ok, there is
// nothing else to check.
continue
}
// Check that U has orthogonal columns and that it matches UAll.
switch jobU {
case lapack.SVDStore:
q := blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
if res := svdPartialUResidual(m, minmn, u, uAll, ldu); res > tol {
t.Errorf("Case %v: columns of U do not match UAll", prefix)
}
case lapack.SVDAll:
q := blas64.General{Rows: m, Cols: m, Data: u, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
if res := svdPartialUResidual(m, m, u, uAll, ldu); res > tol {
t.Errorf("Case %v: columns of U do not match UAll", prefix)
}
}
// Check that VT has orthogonal rows and that it matches VTAll.
switch jobVT {
case lapack.SVDStore:
q := blas64.General{Rows: minmn, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
if res := svdPartialVTResidual(minmn, n, vt, vtAll, ldvt); res > tol {
t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
}
case lapack.SVDAll:
q := blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
if res := svdPartialVTResidual(n, n, vt, vtAll, ldvt); res > tol {
t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
}
}
// Check that singular values are decreasing.
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(s))) {
t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
}
// Check that singular values are non-negative.
if floats.Min(s) < 0 {
t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
}
if !floats.EqualApprox(s, sAll, tol/10) {
t.Errorf("Case %v: singular values differ between full and partial SVD\n%v\n%v", prefix, s, sAll)
}
}
}
}
}
// svdFullResidual returns
// |A - U*D*VT| / (n * aNorm)
// where U, D, and VT are as computed by Dgesvd with jobU = jobVT = lapack.SVDAll.
func svdFullResidual(m, n int, aNorm float64, a []float64, lda int, u []float64, ldu int, d []float64, vt []float64, ldvt int) float64 {
// The implementation follows TESTING/dbdt01.f from the reference.
minmn := min(m, n)
if minmn == 0 {
return 0
}
// j-th column of A - U*D*VT.
aMinusUDVT := make([]float64, m)
// D times the j-th column of VT.
dvt := make([]float64, minmn)
// Compute the residual |A - U*D*VT| one column at a time.
var resid float64
for j := 0; j < n; j++ {
// Copy j-th column of A to aj.
blas64.Copy(blas64.Vector{N: m, Data: a[j:], Inc: lda}, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
// Multiply D times j-th column of VT.
for i := 0; i < minmn; i++ {
dvt[i] = d[i] * vt[i*ldvt+j]
}
// Compute the j-th column of A - U*D*VT.
blas64.Gemv(blas.NoTrans,
-1, blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}, blas64.Vector{N: minmn, Data: dvt, Inc: 1},
1, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
resid = math.Max(resid, blas64.Asum(blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1}))
}
if aNorm == 0 {
if resid != 0 {
// Original matrix A is zero but the residual is non-zero,
// return infinity.
return math.Inf(1)
}
// Original matrix A is zero, residual is zero, return 0.
return 0
}
// Original matrix A is non-zero.
if aNorm >= resid {
resid = resid / aNorm / float64(n)
} else {
if aNorm < 1 {
resid = math.Min(resid, float64(n)*aNorm) / aNorm / float64(n)
} else {
resid = math.Min(resid/aNorm, float64(n)) / float64(n)
}
}
return resid
}
// svdPartialUResidual compares U and URef to see if their columns span the same
// spaces. It returns the maximum over columns of
// |URef(i) - S*U(i)|
// where URef(i) and U(i) are the i-th columns of URef and U, respectively, and
// S is ±1 chosen to minimize the expression.
func svdPartialUResidual(m, n int, u, uRef []float64, ldu int) float64 {
var res float64
for j := 0; j < n; j++ {
imax := blas64.Iamax(blas64.Vector{N: m, Data: uRef[j:], Inc: ldu})
s := math.Copysign(1, uRef[imax*ldu+j]) * math.Copysign(1, u[imax*ldu+j])
for i := 0; i < m; i++ {
diff := math.Abs(uRef[i*ldu+j] - s*u[i*ldu+j])
res = math.Max(res, diff)
}
}
return res
}
// svdPartialVTResidual compares VT and VTRef to see if their rows span the same
// spaces. It returns the maximum over rows of
// |VTRef(i) - S*VT(i)|
// where VTRef(i) and VT(i) are the i-th columns of VTRef and VT, respectively, and
// S is ±1 chosen to minimize the expression.
func svdPartialVTResidual(m, n int, vt, vtRef []float64, ldvt int) float64 {
var res float64
for i := 0; i < m; i++ {
jmax := blas64.Iamax(blas64.Vector{N: n, Data: vtRef[i*ldvt:], Inc: 1})
s := math.Copysign(1, vtRef[i*ldvt+jmax]) * math.Copysign(1, vt[i*ldvt+jmax])
for j := 0; j < n; j++ {
diff := math.Abs(vtRef[i*ldvt+j] - s*vt[i*ldvt+j])
res = math.Max(res, diff)
}
}
return res
}