mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 14:52:57 +08:00
443 lines
10 KiB
Go
443 lines
10 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package testlapack
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"testing"
|
||
|
||
"golang.org/x/exp/rand"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
type Dlahqrer interface {
|
||
Dlahqr(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int) int
|
||
}
|
||
|
||
type dlahqrTest struct {
|
||
h blas64.General
|
||
ilo, ihi int
|
||
iloz, ihiz int
|
||
wantt, wantz bool
|
||
|
||
evWant []complex128 // Optional slice holding known eigenvalues.
|
||
}
|
||
|
||
func DlahqrTest(t *testing.T, impl Dlahqrer) {
|
||
rnd := rand.New(rand.NewSource(1))
|
||
|
||
// Tests that choose the [ilo:ihi+1,ilo:ihi+1] and
|
||
// [iloz:ihiz+1,ilo:ihi+1] blocks randomly.
|
||
for _, wantt := range []bool{true, false} {
|
||
for _, wantz := range []bool{true, false} {
|
||
for _, n := range []int{1, 2, 3, 4, 5, 6, 10, 18, 31, 53} {
|
||
for _, extra := range []int{0, 1, 11} {
|
||
for cas := 0; cas < 100; cas++ {
|
||
ilo := rnd.Intn(n)
|
||
ihi := rnd.Intn(n)
|
||
if ilo > ihi {
|
||
ilo, ihi = ihi, ilo
|
||
}
|
||
iloz := rnd.Intn(ilo + 1)
|
||
ihiz := ihi + rnd.Intn(n-ihi)
|
||
h := randomHessenberg(n, n+extra, rnd)
|
||
if ilo-1 >= 0 {
|
||
h.Data[ilo*h.Stride+ilo-1] = 0
|
||
}
|
||
if ihi+1 < n {
|
||
h.Data[(ihi+1)*h.Stride+ihi] = 0
|
||
}
|
||
test := dlahqrTest{
|
||
h: h,
|
||
ilo: ilo,
|
||
ihi: ihi,
|
||
iloz: iloz,
|
||
ihiz: ihiz,
|
||
wantt: wantt,
|
||
wantz: wantz,
|
||
}
|
||
testDlahqr(t, impl, test)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// Tests that make sure that some potentially problematic corner cases,
|
||
// like zero-sized matrix, are covered.
|
||
for _, wantt := range []bool{true, false} {
|
||
for _, wantz := range []bool{true, false} {
|
||
for _, extra := range []int{0, 1, 11} {
|
||
for _, test := range []dlahqrTest{
|
||
{
|
||
h: randomHessenberg(0, extra, rnd),
|
||
ilo: 0,
|
||
ihi: -1,
|
||
iloz: 0,
|
||
ihiz: -1,
|
||
},
|
||
{
|
||
h: randomHessenberg(1, 1+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 0,
|
||
iloz: 0,
|
||
ihiz: 0,
|
||
},
|
||
{
|
||
h: randomHessenberg(2, 2+extra, rnd),
|
||
ilo: 1,
|
||
ihi: 1,
|
||
iloz: 1,
|
||
ihiz: 1,
|
||
},
|
||
{
|
||
h: randomHessenberg(2, 2+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 1,
|
||
},
|
||
{
|
||
h: randomHessenberg(10, 10+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 0,
|
||
iloz: 0,
|
||
ihiz: 0,
|
||
},
|
||
{
|
||
h: randomHessenberg(10, 10+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 9,
|
||
iloz: 0,
|
||
ihiz: 9,
|
||
},
|
||
{
|
||
h: randomHessenberg(10, 10+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 1,
|
||
},
|
||
{
|
||
h: randomHessenberg(10, 10+extra, rnd),
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 9,
|
||
},
|
||
{
|
||
h: randomHessenberg(10, 10+extra, rnd),
|
||
ilo: 9,
|
||
ihi: 9,
|
||
iloz: 0,
|
||
ihiz: 9,
|
||
},
|
||
} {
|
||
if test.ilo-1 >= 0 {
|
||
test.h.Data[test.ilo*test.h.Stride+test.ilo-1] = 0
|
||
}
|
||
if test.ihi+1 < test.h.Rows {
|
||
test.h.Data[(test.ihi+1)*test.h.Stride+test.ihi] = 0
|
||
}
|
||
test.wantt = wantt
|
||
test.wantz = wantz
|
||
testDlahqr(t, impl, test)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Tests with explicit eigenvalues computed by Octave.
|
||
for _, test := range []dlahqrTest{
|
||
{
|
||
h: blas64.General{
|
||
Rows: 1,
|
||
Cols: 1,
|
||
Stride: 1,
|
||
Data: []float64{7.09965484086874e-1},
|
||
},
|
||
ilo: 0,
|
||
ihi: 0,
|
||
iloz: 0,
|
||
ihiz: 0,
|
||
evWant: []complex128{7.09965484086874e-1},
|
||
},
|
||
{
|
||
h: blas64.General{
|
||
Rows: 2,
|
||
Cols: 2,
|
||
Stride: 2,
|
||
Data: []float64{
|
||
0, -1,
|
||
1, 0,
|
||
},
|
||
},
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 1,
|
||
evWant: []complex128{1i, -1i},
|
||
},
|
||
{
|
||
h: blas64.General{
|
||
Rows: 2,
|
||
Cols: 2,
|
||
Stride: 2,
|
||
Data: []float64{
|
||
6.25219991450918e-1, 8.17510791994361e-1,
|
||
3.31218891622294e-1, 1.24103744878131e-1,
|
||
},
|
||
},
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 1,
|
||
evWant: []complex128{9.52203547663447e-1, -2.02879811334398e-1},
|
||
},
|
||
{
|
||
h: blas64.General{
|
||
Rows: 4,
|
||
Cols: 4,
|
||
Stride: 4,
|
||
Data: []float64{
|
||
1, 0, 0, 0,
|
||
0, 6.25219991450918e-1, 8.17510791994361e-1, 0,
|
||
0, 3.31218891622294e-1, 1.24103744878131e-1, 0,
|
||
0, 0, 0, 1,
|
||
},
|
||
},
|
||
ilo: 1,
|
||
ihi: 2,
|
||
iloz: 0,
|
||
ihiz: 3,
|
||
evWant: []complex128{9.52203547663447e-1, -2.02879811334398e-1},
|
||
},
|
||
{
|
||
h: blas64.General{
|
||
Rows: 2,
|
||
Cols: 2,
|
||
Stride: 2,
|
||
Data: []float64{
|
||
-1.1219562276608, 6.85473513349362e-1,
|
||
-8.19951061145131e-1, 1.93728523178888e-1,
|
||
},
|
||
},
|
||
ilo: 0,
|
||
ihi: 1,
|
||
iloz: 0,
|
||
ihiz: 1,
|
||
evWant: []complex128{
|
||
-4.64113852240958e-1 + 3.59580510817350e-1i,
|
||
-4.64113852240958e-1 - 3.59580510817350e-1i,
|
||
},
|
||
},
|
||
{
|
||
h: blas64.General{
|
||
Rows: 5,
|
||
Cols: 5,
|
||
Stride: 5,
|
||
Data: []float64{
|
||
9.57590178533658e-1, -5.10651295522708e-1, 9.24974510015869e-1, -1.30016306879522e-1, 2.92601986926954e-2,
|
||
-1.08084756637964, 1.77529701001213, -1.36480197632509, 2.23196371219601e-1, 1.12912853063308e-1,
|
||
0, -8.44075612174676e-1, 1.067867614486, -2.55782915176399e-1, -2.00598563137468e-1,
|
||
0, 0, -5.67097237165410e-1, 2.07205057427341e-1, 6.54998340743380e-1,
|
||
0, 0, 0, -1.89441413886041e-1, -4.18125416021786e-1,
|
||
},
|
||
},
|
||
ilo: 0,
|
||
ihi: 4,
|
||
iloz: 0,
|
||
ihiz: 4,
|
||
evWant: []complex128{
|
||
2.94393309555622,
|
||
4.97029793606701e-1 + 3.63041654992384e-1i,
|
||
4.97029793606701e-1 - 3.63041654992384e-1i,
|
||
-1.74079119166145e-1 + 2.01570009462092e-1i,
|
||
-1.74079119166145e-1 - 2.01570009462092e-1i,
|
||
},
|
||
},
|
||
} {
|
||
test.wantt = true
|
||
test.wantz = true
|
||
testDlahqr(t, impl, test)
|
||
}
|
||
}
|
||
|
||
func testDlahqr(t *testing.T, impl Dlahqrer, test dlahqrTest) {
|
||
const tol = 1e-14
|
||
|
||
h := cloneGeneral(test.h)
|
||
n := h.Cols
|
||
extra := h.Stride - h.Cols
|
||
wantt := test.wantt
|
||
wantz := test.wantz
|
||
ilo := test.ilo
|
||
ihi := test.ihi
|
||
iloz := test.iloz
|
||
ihiz := test.ihiz
|
||
|
||
var z, zCopy blas64.General
|
||
if wantz {
|
||
z = eye(n, n+extra)
|
||
zCopy = cloneGeneral(z)
|
||
}
|
||
|
||
wr := nanSlice(ihi + 1)
|
||
wi := nanSlice(ihi + 1)
|
||
|
||
unconverged := impl.Dlahqr(wantt, wantz, n, ilo, ihi, h.Data, h.Stride, wr, wi, iloz, ihiz, z.Data, z.Stride)
|
||
|
||
prefix := fmt.Sprintf("Case wantt=%v, wantz=%v, n=%v, ilo=%v, ihi=%v, iloz=%v, ihiz=%v, extra=%v",
|
||
wantt, wantz, n, ilo, ihi, iloz, ihiz, extra)
|
||
|
||
if !generalOutsideAllNaN(h) {
|
||
t.Errorf("%v: out-of-range write to H\n%v", prefix, h.Data)
|
||
}
|
||
if !generalOutsideAllNaN(z) {
|
||
t.Errorf("%v: out-of-range write to Z\n%v", prefix, z.Data)
|
||
}
|
||
|
||
if !isUpperHessenberg(h) {
|
||
t.Logf("%v: H is not Hessenberg", prefix)
|
||
}
|
||
|
||
start := ilo // Index of the first computed eigenvalue.
|
||
if unconverged != 0 {
|
||
start = unconverged
|
||
if start == ihi+1 {
|
||
t.Logf("%v: no eigenvalue has converged", prefix)
|
||
}
|
||
}
|
||
|
||
// Check that wr and wi have not been modified in [:start].
|
||
if !isAllNaN(wr[:start]) {
|
||
t.Errorf("%v: unexpected modification of wr", prefix)
|
||
}
|
||
if !isAllNaN(wi[:start]) {
|
||
t.Errorf("%v: unexpected modification of wi", prefix)
|
||
}
|
||
|
||
var hasReal bool
|
||
for i := start; i <= ihi; {
|
||
if wi[i] == 0 { // Real eigenvalue.
|
||
hasReal = true
|
||
// Check that the eigenvalue corresponds to a 1×1 block
|
||
// on the diagonal of H.
|
||
if wantt {
|
||
if wr[i] != h.Data[i*h.Stride+i] {
|
||
t.Errorf("%v: wr[%v] != H[%v,%v]", prefix, i, i, i)
|
||
}
|
||
for _, index := range []struct{ r, c int }{
|
||
{i, i - 1}, // h h h
|
||
{i + 1, i - 1}, // 0 wr[i] h
|
||
{i + 1, i}, // 0 0 h
|
||
} {
|
||
if index.r >= n || index.c < 0 {
|
||
continue
|
||
}
|
||
if h.Data[index.r*h.Stride+index.c] != 0 {
|
||
t.Errorf("%v: H[%v,%v] != 0", prefix, index.r, index.c)
|
||
}
|
||
}
|
||
}
|
||
i++
|
||
continue
|
||
}
|
||
|
||
// Complex eigenvalue.
|
||
|
||
// In the conjugate pair the real parts must be equal.
|
||
if wr[i] != wr[i+1] {
|
||
t.Errorf("%v: real part of conjugate pair not equal, i=%v", prefix, i)
|
||
}
|
||
// The first imaginary part must be positive.
|
||
if wi[i] < 0 {
|
||
t.Errorf("%v: wi[%v] not positive", prefix, i)
|
||
}
|
||
// The second imaginary part must be negative with the same
|
||
// magnitude.
|
||
if wi[i] != -wi[i+1] {
|
||
t.Errorf("%v: wi[%v] != -wi[%v]", prefix, i, i+1)
|
||
}
|
||
if wantt {
|
||
// Check that wi[i] has the correct value.
|
||
if wr[i] != h.Data[i*h.Stride+i] {
|
||
t.Errorf("%v: wr[%v] != H[%v,%v]", prefix, i, i, i)
|
||
}
|
||
if wr[i] != h.Data[(i+1)*h.Stride+i+1] {
|
||
t.Errorf("%v: wr[%v] != H[%v,%v]", prefix, i, i+1, i+1)
|
||
}
|
||
prod := math.Abs(h.Data[(i+1)*h.Stride+i] * h.Data[i*h.Stride+i+1])
|
||
if math.Abs(math.Sqrt(prod)-wi[i]) > tol {
|
||
t.Errorf("%v: unexpected value of wi[%v]: want %v, got %v", prefix, i, math.Sqrt(prod), wi[i])
|
||
}
|
||
|
||
// Check that the corresponding diagonal block is 2×2.
|
||
for _, index := range []struct{ r, c int }{
|
||
{i, i - 1}, // i
|
||
{i + 1, i - 1}, // h h h h
|
||
{i + 2, i - 1}, // 0 wr[i] b h i
|
||
{i + 2, i}, // 0 c wr[i+1] h
|
||
{i + 2, i + 1}, // 0 0 0 h
|
||
} {
|
||
if index.r >= n || index.c < 0 {
|
||
continue
|
||
}
|
||
if h.Data[index.r*h.Stride+index.c] != 0 {
|
||
t.Errorf("%v: H[%v,%v] != 0", prefix, index.r, index.c)
|
||
}
|
||
}
|
||
}
|
||
i += 2
|
||
}
|
||
// If the number of found eigenvalues is odd, at least one must be real.
|
||
if (ihi+1-start)%2 != 0 && !hasReal {
|
||
t.Errorf("%v: expected at least one real eigenvalue", prefix)
|
||
}
|
||
|
||
// Compare found eigenvalues to the reference, if known.
|
||
if test.evWant != nil {
|
||
for i := start; i <= ihi; i++ {
|
||
ev := complex(wr[i], wi[i])
|
||
found, _ := containsComplex(test.evWant, ev, tol)
|
||
if !found {
|
||
t.Errorf("%v: unexpected eigenvalue %v", prefix, ev)
|
||
}
|
||
}
|
||
}
|
||
|
||
if !wantz {
|
||
return
|
||
}
|
||
|
||
// Z should contain the orthogonal matrix U.
|
||
if !isOrthogonal(z) {
|
||
t.Errorf("%v: Z is not orthogonal", prefix)
|
||
}
|
||
// Z should have been modified only in the
|
||
// [iloz:ihiz+1,ilo:ihi+1] block.
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j < n; j++ {
|
||
if iloz <= i && i <= ihiz && ilo <= j && j <= ihi {
|
||
continue
|
||
}
|
||
if z.Data[i*z.Stride+j] != zCopy.Data[i*zCopy.Stride+j] {
|
||
t.Errorf("%v: Z modified outside of [iloz:ihiz+1,ilo:ihi+1] block", prefix)
|
||
}
|
||
}
|
||
}
|
||
if wantt {
|
||
hu := eye(n, n)
|
||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, test.h, z, 0, hu)
|
||
uhu := eye(n, n)
|
||
blas64.Gemm(blas.Trans, blas.NoTrans, 1, z, hu, 0, uhu)
|
||
if !equalApproxGeneral(uhu, h, 10*tol) {
|
||
t.Errorf("%v: Z^T*(initial H)*Z and (final H) are not equal", prefix)
|
||
}
|
||
}
|
||
}
|