mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 15:47:01 +08:00

This is a very simplified version of a Gremlin-like language. The simplification is in part forced by Go, but also reduces the level of hiding complexity that is present in Gremlin.
511 lines
13 KiB
Go
511 lines
13 KiB
Go
// Copyright ©2022 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package rdf
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/iterator"
|
|
"gonum.org/v1/gonum/graph/multi"
|
|
"gonum.org/v1/gonum/graph/set/uid"
|
|
)
|
|
|
|
// Graph implements an RDF graph satisfying the graph.Graph and graph.Multigraph
|
|
// interfaces.
|
|
type Graph struct {
|
|
nodes map[int64]graph.Node
|
|
from map[int64]map[int64]map[int64]graph.Line
|
|
to map[int64]map[int64]map[int64]graph.Line
|
|
pred map[int64]map[*Statement]bool
|
|
|
|
termIDs map[string]int64
|
|
ids *uid.Set
|
|
}
|
|
|
|
// NewGraph returns a new empty Graph.
|
|
func NewGraph() *Graph {
|
|
return &Graph{
|
|
nodes: make(map[int64]graph.Node),
|
|
from: make(map[int64]map[int64]map[int64]graph.Line),
|
|
to: make(map[int64]map[int64]map[int64]graph.Line),
|
|
pred: make(map[int64]map[*Statement]bool),
|
|
|
|
termIDs: make(map[string]int64),
|
|
ids: uid.NewSet(),
|
|
}
|
|
}
|
|
|
|
// addNode adds n to the graph. It panics if the added node ID matches an
|
|
// existing node ID.
|
|
func (g *Graph) addNode(n graph.Node) {
|
|
if _, exists := g.nodes[n.ID()]; exists {
|
|
panic(fmt.Sprintf("rdf: node ID collision: %d", n.ID()))
|
|
}
|
|
g.nodes[n.ID()] = n
|
|
g.ids.Use(n.ID())
|
|
}
|
|
|
|
// AddStatement adds s to the graph. It panics if Term UIDs in the statement
|
|
// are not consistent with existing terms in the graph. Statements must not
|
|
// be altered while being held by the graph. If the UID fields of the terms
|
|
// in s are zero, they will be set to values consistent with the rest of the
|
|
// graph on return, mutating the parameter, otherwise the UIDs must match terms
|
|
// that already exist in the graph. The statement must be a valid RDF statement
|
|
// otherwise AddStatement will panic.
|
|
func (g *Graph) AddStatement(s *Statement) {
|
|
_, _, kind, err := s.Predicate.Parts()
|
|
if err != nil {
|
|
panic(fmt.Errorf("rdf: error extracting predicate: %w", err))
|
|
}
|
|
if kind != IRI {
|
|
panic(fmt.Errorf("rdf: predicate is not an IRI: %s", s.Predicate.Value))
|
|
}
|
|
|
|
_, _, kind, err = s.Subject.Parts()
|
|
if err != nil {
|
|
panic(fmt.Errorf("rdf: error extracting subject: %w", err))
|
|
}
|
|
switch kind {
|
|
case IRI, Blank:
|
|
default:
|
|
panic(fmt.Errorf("rdf: subject is not an IRI or blank node: %s", s.Subject.Value))
|
|
}
|
|
|
|
_, _, kind, err = s.Object.Parts()
|
|
if err != nil {
|
|
panic(fmt.Errorf("rdf: error extracting object: %w", err))
|
|
}
|
|
if kind == Invalid {
|
|
panic(fmt.Errorf("rdf: object is not a valid term: %s", s.Object.Value))
|
|
}
|
|
|
|
statements, ok := g.pred[s.Predicate.UID]
|
|
if !ok {
|
|
statements = make(map[*Statement]bool)
|
|
g.pred[s.Predicate.UID] = statements
|
|
}
|
|
statements[s] = true
|
|
g.addTerm(&s.Subject)
|
|
g.addTerm(&s.Predicate)
|
|
g.addTerm(&s.Object)
|
|
g.setLine(s)
|
|
}
|
|
|
|
// addTerm adds t to the graph. It panics if the added node ID matches an existing node ID.
|
|
func (g *Graph) addTerm(t *Term) {
|
|
if t.UID == 0 {
|
|
id, ok := g.termIDs[t.Value]
|
|
if ok {
|
|
t.UID = id
|
|
return
|
|
}
|
|
id = g.ids.NewID()
|
|
g.ids.Use(id)
|
|
t.UID = id
|
|
g.termIDs[t.Value] = id
|
|
return
|
|
}
|
|
|
|
id, ok := g.termIDs[t.Value]
|
|
if !ok {
|
|
g.termIDs[t.Value] = t.UID
|
|
} else if id != t.UID {
|
|
panic(fmt.Sprintf("rdf: term ID collision: term:%s new ID:%d old ID:%d", t.Value, t.UID, id))
|
|
}
|
|
}
|
|
|
|
// AllStatements returns an iterator of the statements that make up the graph.
|
|
func (g *Graph) AllStatements() *Statements {
|
|
return &Statements{eit: g.Edges()}
|
|
}
|
|
|
|
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
// The returned graph.Edge is a multi.Edge if an edge exists.
|
|
func (g *Graph) Edge(uid, vid int64) graph.Edge {
|
|
l := g.Lines(uid, vid)
|
|
if l == graph.Empty {
|
|
return nil
|
|
}
|
|
return multi.Edge{F: g.Node(uid), T: g.Node(vid), Lines: l}
|
|
}
|
|
|
|
// Edges returns all the edges in the graph. Each edge in the returned slice
|
|
// is a multi.Edge.
|
|
func (g *Graph) Edges() graph.Edges {
|
|
if len(g.nodes) == 0 {
|
|
return graph.Empty
|
|
}
|
|
var edges []graph.Edge
|
|
for _, u := range g.nodes {
|
|
for _, e := range g.from[u.ID()] {
|
|
var lines []graph.Line
|
|
for _, l := range e {
|
|
lines = append(lines, l)
|
|
}
|
|
if len(lines) != 0 {
|
|
edges = append(edges, multi.Edge{
|
|
F: g.Node(u.ID()),
|
|
T: g.Node(lines[0].To().ID()),
|
|
Lines: iterator.NewOrderedLines(lines),
|
|
})
|
|
}
|
|
}
|
|
}
|
|
if len(edges) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewOrderedEdges(edges)
|
|
}
|
|
|
|
// From returns all nodes in g that can be reached directly from n.
|
|
//
|
|
// The returned graph.Nodes is only valid until the next mutation of
|
|
// the receiver.
|
|
func (g *Graph) From(id int64) graph.Nodes {
|
|
if len(g.from[id]) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewNodesByLines(g.nodes, g.from[id])
|
|
}
|
|
|
|
// FromSubject returns all nodes in g that can be reached directly from an
|
|
// RDF subject term.
|
|
//
|
|
// The returned graph.Nodes is only valid until the next mutation of
|
|
// the receiver.
|
|
func (g *Graph) FromSubject(t Term) graph.Nodes {
|
|
return g.From(t.UID)
|
|
}
|
|
|
|
// HasEdgeBetween returns whether an edge exists between nodes x and y without
|
|
// considering direction.
|
|
func (g *Graph) HasEdgeBetween(xid, yid int64) bool {
|
|
if _, ok := g.from[xid][yid]; ok {
|
|
return true
|
|
}
|
|
_, ok := g.from[yid][xid]
|
|
return ok
|
|
}
|
|
|
|
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
|
|
func (g *Graph) HasEdgeFromTo(uid, vid int64) bool {
|
|
_, ok := g.from[uid][vid]
|
|
return ok
|
|
}
|
|
|
|
// Lines returns the lines from u to v if such any such lines exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
func (g *Graph) Lines(uid, vid int64) graph.Lines {
|
|
edge := g.from[uid][vid]
|
|
if len(edge) == 0 {
|
|
return graph.Empty
|
|
}
|
|
var lines []graph.Line
|
|
for _, l := range edge {
|
|
lines = append(lines, l)
|
|
}
|
|
return iterator.NewOrderedLines(lines)
|
|
}
|
|
|
|
// newLine returns a new Line from the source to the destination node.
|
|
// The returned Line will have a graph-unique ID.
|
|
// The Line's ID does not become valid in g until the Line is added to g.
|
|
func (g *Graph) newLine(from, to graph.Node) graph.Line {
|
|
return multi.Line{F: from, T: to, UID: g.ids.NewID()}
|
|
}
|
|
|
|
// newNode returns a new unique Node to be added to g. The Node's ID does
|
|
// not become valid in g until the Node is added to g.
|
|
func (g *Graph) newNode() graph.Node {
|
|
if len(g.nodes) == 0 {
|
|
return multi.Node(0)
|
|
}
|
|
if int64(len(g.nodes)) == uid.Max {
|
|
panic("rdf: cannot allocate node: no slot")
|
|
}
|
|
return multi.Node(g.ids.NewID())
|
|
}
|
|
|
|
// Node returns the node with the given ID if it exists in the graph,
|
|
// and nil otherwise.
|
|
func (g *Graph) Node(id int64) graph.Node {
|
|
return g.nodes[id]
|
|
}
|
|
|
|
// TermFor returns the Term for the given text. The text must be
|
|
// an exact match for the Term's Value field.
|
|
func (g *Graph) TermFor(text string) (term Term, ok bool) {
|
|
id, ok := g.termIDs[text]
|
|
if !ok {
|
|
return
|
|
}
|
|
n, ok := g.nodes[id]
|
|
if !ok {
|
|
var s map[*Statement]bool
|
|
s, ok = g.pred[id]
|
|
if !ok {
|
|
return
|
|
}
|
|
for k := range s {
|
|
return k.Predicate, true
|
|
}
|
|
}
|
|
return n.(Term), true
|
|
}
|
|
|
|
// Nodes returns all the nodes in the graph.
|
|
//
|
|
// The returned graph.Nodes is only valid until the next mutation of
|
|
// the receiver.
|
|
func (g *Graph) Nodes() graph.Nodes {
|
|
if len(g.nodes) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewNodes(g.nodes)
|
|
}
|
|
|
|
// Predicates returns a slice of all the predicates used in the graph.
|
|
func (g *Graph) Predicates() []Term {
|
|
p := make([]Term, len(g.pred))
|
|
i := 0
|
|
for _, statements := range g.pred {
|
|
for s := range statements {
|
|
p[i] = s.Predicate
|
|
i++
|
|
break
|
|
}
|
|
}
|
|
return p
|
|
}
|
|
|
|
// removeLine removes the line with the given end point and line IDs from
|
|
// the graph, leaving the terminal nodes. If the line does not exist it is
|
|
// a no-op.
|
|
func (g *Graph) removeLine(fid, tid, id int64) {
|
|
if _, ok := g.nodes[fid]; !ok {
|
|
return
|
|
}
|
|
if _, ok := g.nodes[tid]; !ok {
|
|
return
|
|
}
|
|
|
|
delete(g.from[fid][tid], id)
|
|
if len(g.from[fid][tid]) == 0 {
|
|
delete(g.from[fid], tid)
|
|
}
|
|
delete(g.to[tid][fid], id)
|
|
if len(g.to[tid][fid]) == 0 {
|
|
delete(g.to[tid], fid)
|
|
}
|
|
|
|
g.ids.Release(id)
|
|
}
|
|
|
|
// removeNode removes the node with the given ID from the graph, as well as
|
|
// any edges attached to it. If the node is not in the graph it is a no-op.
|
|
func (g *Graph) removeNode(id int64) {
|
|
if _, ok := g.nodes[id]; !ok {
|
|
return
|
|
}
|
|
delete(g.nodes, id)
|
|
|
|
for from := range g.from[id] {
|
|
delete(g.to[from], id)
|
|
}
|
|
delete(g.from, id)
|
|
|
|
for to := range g.to[id] {
|
|
delete(g.from[to], id)
|
|
}
|
|
delete(g.to, id)
|
|
|
|
g.ids.Release(id)
|
|
}
|
|
|
|
// RemoveStatement removes s from the graph, leaving the terminal nodes if they
|
|
// are part of another statement. If the statement does not exist in g it is a no-op.
|
|
func (g *Graph) RemoveStatement(s *Statement) {
|
|
if !g.pred[s.Predicate.UID][s] {
|
|
return
|
|
}
|
|
|
|
// Remove the connection.
|
|
g.removeLine(s.Subject.UID, s.Object.UID, s.Predicate.UID)
|
|
statements := g.pred[s.Predicate.UID]
|
|
delete(statements, s)
|
|
if len(statements) == 0 {
|
|
delete(g.pred, s.Predicate.UID)
|
|
if len(g.from[s.Predicate.UID]) == 0 {
|
|
g.ids.Release(s.Predicate.UID)
|
|
delete(g.termIDs, s.Predicate.Value)
|
|
}
|
|
}
|
|
|
|
// Remove any orphan terms.
|
|
if g.From(s.Subject.UID).Len() == 0 && g.To(s.Subject.UID).Len() == 0 {
|
|
g.removeNode(s.Subject.UID)
|
|
delete(g.termIDs, s.Subject.Value)
|
|
}
|
|
if g.From(s.Object.UID).Len() == 0 && g.To(s.Object.UID).Len() == 0 {
|
|
g.removeNode(s.Object.UID)
|
|
delete(g.termIDs, s.Object.Value)
|
|
}
|
|
}
|
|
|
|
// RemoveTerm removes t and any statements referencing t from the graph. If
|
|
// the term is a predicate, all statements with the predicate are removed. If
|
|
// the term does not exist it is a no-op.
|
|
func (g *Graph) RemoveTerm(t Term) {
|
|
// Remove any predicates.
|
|
if statements, ok := g.pred[t.UID]; ok {
|
|
for s := range statements {
|
|
g.RemoveStatement(s)
|
|
}
|
|
}
|
|
|
|
// Quick return.
|
|
_, nok := g.nodes[t.UID]
|
|
_, fok := g.from[t.UID]
|
|
_, tok := g.to[t.UID]
|
|
if !nok && !fok && !tok {
|
|
return
|
|
}
|
|
|
|
// Remove any statements that impinge on the term.
|
|
to := g.From(t.UID)
|
|
for to.Next() {
|
|
lines := g.Lines(t.UID, to.Node().ID())
|
|
for lines.Next() {
|
|
g.RemoveStatement(lines.Line().(*Statement))
|
|
}
|
|
}
|
|
from := g.To(t.UID)
|
|
if from.Next() {
|
|
lines := g.Lines(from.Node().ID(), t.UID)
|
|
for lines.Next() {
|
|
g.RemoveStatement(lines.Line().(*Statement))
|
|
}
|
|
}
|
|
|
|
// Remove the node.
|
|
g.removeNode(t.UID)
|
|
delete(g.termIDs, t.Value)
|
|
}
|
|
|
|
// setLine adds l, a line from one node to another. If the nodes do not exist,
|
|
// they are added, and are set to the nodes of the line otherwise.
|
|
func (g *Graph) setLine(l graph.Line) {
|
|
var (
|
|
from = l.From()
|
|
fid = from.ID()
|
|
to = l.To()
|
|
tid = to.ID()
|
|
lid = l.ID()
|
|
)
|
|
|
|
if _, ok := g.nodes[fid]; !ok {
|
|
g.addNode(from)
|
|
} else {
|
|
g.nodes[fid] = from
|
|
}
|
|
if _, ok := g.nodes[tid]; !ok {
|
|
g.addNode(to)
|
|
} else {
|
|
g.nodes[tid] = to
|
|
}
|
|
|
|
switch {
|
|
case g.from[fid] == nil:
|
|
g.from[fid] = map[int64]map[int64]graph.Line{tid: {lid: l}}
|
|
case g.from[fid][tid] == nil:
|
|
g.from[fid][tid] = map[int64]graph.Line{lid: l}
|
|
default:
|
|
g.from[fid][tid][lid] = l
|
|
}
|
|
switch {
|
|
case g.to[tid] == nil:
|
|
g.to[tid] = map[int64]map[int64]graph.Line{fid: {lid: l}}
|
|
case g.to[tid][fid] == nil:
|
|
g.to[tid][fid] = map[int64]graph.Line{lid: l}
|
|
default:
|
|
g.to[tid][fid][lid] = l
|
|
}
|
|
|
|
g.ids.Use(lid)
|
|
}
|
|
|
|
// Statements returns an iterator of the statements that connect the subject
|
|
// term node u to the object term node v.
|
|
func (g *Graph) Statements(uid, vid int64) *Statements {
|
|
return &Statements{lit: g.Lines(uid, vid)}
|
|
}
|
|
|
|
// To returns all nodes in g that can reach directly to n.
|
|
//
|
|
// The returned graph.Nodes is only valid until the next mutation of
|
|
// the receiver.
|
|
func (g *Graph) To(id int64) graph.Nodes {
|
|
if len(g.to[id]) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewNodesByLines(g.nodes, g.to[id])
|
|
}
|
|
|
|
// ToObject returns all nodes in g that can reach directly to an RDF object
|
|
// term.
|
|
//
|
|
// The returned graph.Nodes is only valid until the next mutation of
|
|
// the receiver.
|
|
func (g *Graph) ToObject(t Term) graph.Nodes {
|
|
return g.To(t.UID)
|
|
}
|
|
|
|
// Statements is an RDF statement iterator.
|
|
type Statements struct {
|
|
eit graph.Edges
|
|
lit graph.Lines
|
|
}
|
|
|
|
// Next returns whether the iterator holds any additional statements.
|
|
func (s *Statements) Next() bool {
|
|
if s.lit != nil && s.lit.Next() {
|
|
return true
|
|
}
|
|
if s.eit == nil || !s.eit.Next() {
|
|
return false
|
|
}
|
|
s.lit = s.eit.Edge().(multi.Edge).Lines
|
|
return s.lit.Next()
|
|
}
|
|
|
|
// Statement returns the current statement.
|
|
func (s *Statements) Statement() *Statement {
|
|
return s.lit.Line().(*Statement)
|
|
}
|
|
|
|
// ConnectedByAny is a helper function to for simplifying graph traversal
|
|
// conditions.
|
|
func ConnectedByAny(e graph.Edge, with func(*Statement) bool) bool {
|
|
switch e := e.(type) {
|
|
case *Statement:
|
|
return with(e)
|
|
case graph.Lines:
|
|
it := e
|
|
for it.Next() {
|
|
s, ok := it.Line().(*Statement)
|
|
if !ok {
|
|
continue
|
|
}
|
|
ok = with(s)
|
|
if ok {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|