Files
gonum/sliceops.go
2013-07-24 00:09:10 -07:00

303 lines
7.9 KiB
Go

package sliceops
import "math"
// InsufficientElements is an error type used by FindFirst
type InsufficientElements struct{}
func (i InsufficientElements) Error() string {
return "Insufficient elements found"
}
// Add returns the element-wise sum of all the slices with the
// results stored in the first slice.
// Example: Add(a,b) // result will be a[i] = a[i] + b[i]
// a := make([]float64, len(b)); Add(a,b,c,d,e).
// For computational efficiency, it is assumed that all of
// the variadic arguments have the same length. If this is
// in doubt, EqLengths can be called.
func Add(dst []float64, slices ...[]float64) {
if len(slices) == 0 {
return
}
for i := 0; i < len(slices); i++ {
for j, val := range slices[i] {
dst[j] += val
}
}
}
// AddConst adds a constant to all of the values in s
func AddConst(s []float64, c float64) {
for i := range s {
s[i] += c
}
}
// ApplyFunc applies a function (math.Exp, math.Sin, etc.) to every element
// of the slice
func Apply(s []float64, f func(float64) float64) {
for i, val := range s {
s[i] = f(val)
}
}
// Cumprod finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination. Assumes destination is at least as long as s
func CumProd(dst, s []float64) []float64 {
if dst == nil {
dst = make([]float64, len(s))
}
if len(s) == 0 {
return dst[:0]
}
dst[0] = s[0]
for i := 1; i < len(s); i++ {
dst[i] = dst[i-1] * s[i]
}
return dst
}
// Cumsum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination. Assumes destination is at least as long as s
func CumSum(dst, s []float64) {
dst[0] = s[0]
for i := 1; i < len(s); i++ {
dst[i] = dst[i-1] + s[i]
}
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[n]*s2[n]
// Assumes the slices are of equal length. If this is
// in doubt it should be checked with Eqlen
func Dot(s1, s2 []float64) float64 {
var sum float64
for i, val := range s1 {
sum += val * s2[i]
}
return sum
}
// Eq returns false if |s1[i] - s2[i]| > tol for any i.
// Assumes that the slices are of equal length. If this
// is in doubt it should be checked with Eqlen
func Eq(s1, s2 []float64, tol float64) bool {
for i, val := range s1 {
if math.Abs(s2[i]-val) > tol {
return false
}
}
return true
}
// Eqlen returns true if all of the slices have equal length,
// and false otherwise.
// Special case: Returns true if there are no input slices
func EqLen(slices ...[]float64) bool {
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies a function returning a boolean to the elements of the slice
// and returns a list of indices for which the value is true
func Find(s []float64, f func(float64) bool) (inds []int) {
// Not sure what an appropriate capacity is here. Don't want to make
// it the length of the slice because if the slice is large that is
// a lot of potentially wasted memory
inds = make([]int, 0)
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds
}
// FindFirst applies a function returning a boolean to the elements of the slice
// and returns a list of the first k indices for which the value is true.
// If there are fewer than k indices for which the value is true, it returns
// the found indices and an error.
func FindFirst(s []float64, f func(float64) bool, k int) (inds []int, err error) {
count := 0
inds = make([]int, 0, k)
for i, val := range s {
if f(val) {
inds = append(inds, i)
count++
if count == k {
return inds, nil
}
}
}
return inds, InsufficientElements{}
}
// LogSpan returns a set of N equally spaced points in log space between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u. Will panic if the destination has
// length < 2. Note that this call will return NaNs if l or u are negative, and
// zeros if l or u is zero.
func LogSpan(dst []float64, l, u float64) {
Span(dst, math.Log(l), math.Log(u))
Apply(dst, math.Exp)
}
// Logsumexp returns the log of the sum of the exponentials of the values in s
func LogSumExp(s []float64) (lse float64) {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval, _ := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
// Subtract off the largest value, so the largest value in
// the new slice is 0
AddConst(s, -maxval)
defer AddConst(s, maxval) // make sure we add it back on at the end
// compute the sumexp part
for _, val := range s {
lse += math.Exp(val)
}
// Take the log and add back on the constant taken out
lse = math.Log(lse) + maxval
return logsumexp
}
// Max returns the maximum value in the slice and the location of
// the maximum value. If the input slice is empty, zero is returned
// as the minimum value and -1 is returned as the index.
// Use: val,ind := sliceops.Max(slice)
func Max(s []float64) (max float64, ind int) {
if len(s) == 0 {
return max, -1 // Ind is -1 to make clear it's not the zeroth index.
}
max = s[0]
ind = 0
for i, val := range s {
if val > max {
max = val
ind = i
}
}
return max, ind
}
// Min returns the minimum value in the slice and the index of
// the minimum value. If the input slice is empty, zero is returned
// as the minimum value and -1 is returned as the index.
// Use: val,ind := sliceops.Min(slice)
func Min(s []float64) (min float64, ind int) {
if len(s) == 0 {
return min, -1 // Ind is -1 to make clear it's not the zeroth index.
}
min = s[0]
ind = 0
for i, val := range s {
if val < min {
min = val
ind = i
}
}
return min, ind
}
// Norm returns the L norm of the slice S.
// Special cases:
// L = math.Inf(1) gives the maximum value
// Does not correctly compute the zero norm, as the zero norm is a count.
func Norm(s []float64, L float64) (norm float64) {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if L == 2 {
for _, val := range s {
norm += val * val
}
return math.Pow(norm, 0.5)
}
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
norm, _ = Max(s)
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// Prod returns the product of the elements of the slice
// Returns 1 if the input has length zero
func Prod(s []float64) (prod float64) {
prod = 1
for _, val := range s {
prod *= val
}
return prod
}
// Scale multiplies every element in s by a constant in place
func Scale(s []float64, c float64) {
for i := range s {
s[i] *= c
}
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u. Will panic if the destination has
// length < 2
func Span(dst []float64, l, u float64) {
n := len(dst)
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
}
// Sub subtracts, element-wise, the first argument from the second. Assumes
// the lengths of s and t match (can be tested with EqLen)
func Sub(s, t []float64) {
for i, val := range t {
s[i] -= val
}
}
// SubDst subtracts, element-wise, the first argument from the second and
// store the result in destination. Assumes the lengths of s and t match
// (can be tested with EqLen)
func SubDst(dst, s, t []float64) {
for i, val := range t {
dst[i] = s[i] - val
}
}
// Sum returns the sum of the elements of the slice
func Sum(s []float64) (sum float64) {
for _, val := range s {
sum += val
}
return
}