Files
gonum/lapack/gonum/dormbr.go
2019-02-28 12:40:53 +01:00

179 lines
5.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dormbr applies a multiplicative update to the matrix C based on a
// decomposition computed by Dgebrd.
//
// Dormbr overwrites the m×n matrix C with
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
//
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
// C * P if vect == lapack.ApplyP, side == blas.Right, and trans == blas.NoTrans
// P^T * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.Trans
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
// where P and Q are the orthogonal matrices determined by Dgebrd when reducing
// a matrix A to bidiagonal form: A = Q * B * P^T. See Dgebrd for the
// definitions of Q and P.
//
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
// side == blas.Left, while nq = n if side == blas.Right.
//
// tau must have length min(nq,k), and Dormbr will panic otherwise. tau contains
// the elementary reflectors to construct Q or P depending on the value of
// vect.
//
// work must have length at least max(1,lwork), and lwork must be either -1 or
// at least max(1,n) if side == blas.Left, and at least max(1,m) if side ==
// blas.Right. For optimum performance lwork should be at least n*nb if side ==
// blas.Left, and at least m*nb if side == blas.Right, where nb is the optimal
// block size. On return, work[0] will contain the optimal value of lwork.
//
// If lwork == -1, the function only calculates the optimal value of lwork and
// returns it in work[0].
//
// Dormbr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dormbr(vect lapack.ApplyOrtho, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
nq := n
nw := m
if side == blas.Left {
nq = m
nw = n
}
applyQ := vect == lapack.ApplyQ
switch {
case !applyQ && vect != lapack.ApplyP:
panic(badApplyOrtho)
case side != blas.Left && side != blas.Right:
panic(badSide)
case trans != blas.NoTrans && trans != blas.Trans:
panic(badTrans)
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case k < 0:
panic(kLT0)
case applyQ && lda < max(1, min(nq, k)):
panic(badLdA)
case !applyQ && lda < max(1, nq):
panic(badLdA)
case ldc < max(1, n):
panic(badLdC)
case lwork < max(1, nw) && lwork != -1:
panic(badWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if m == 0 || n == 0 {
work[0] = 1
return
}
// The current implementation does not use opts, but a future change may
// use these options so construct them.
var opts string
if side == blas.Left {
opts = "L"
} else {
opts = "R"
}
if trans == blas.Trans {
opts += "T"
} else {
opts += "N"
}
var nb int
if applyQ {
if side == blas.Left {
nb = impl.Ilaenv(1, "DORMQR", opts, m-1, n, m-1, -1)
} else {
nb = impl.Ilaenv(1, "DORMQR", opts, m, n-1, n-1, -1)
}
} else {
if side == blas.Left {
nb = impl.Ilaenv(1, "DORMLQ", opts, m-1, n, m-1, -1)
} else {
nb = impl.Ilaenv(1, "DORMLQ", opts, m, n-1, n-1, -1)
}
}
lworkopt := max(1, nw) * nb
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
minnqk := min(nq, k)
switch {
case applyQ && len(a) < (nq-1)*lda+minnqk:
panic(shortA)
case !applyQ && len(a) < (minnqk-1)*lda+nq:
panic(shortA)
case len(tau) < minnqk:
panic(badTau)
case len(c) < (m-1)*ldc+n:
panic(shortC)
}
if applyQ {
// Change the operation to get Q depending on the size of the initial
// matrix to Dgebrd. The size matters due to the storage location of
// the off-diagonal elements.
if nq >= k {
impl.Dormqr(side, trans, m, n, k, a, lda, tau[:k], c, ldc, work, lwork)
} else if nq > 1 {
mi := m
ni := n - 1
i1 := 0
i2 := 1
if side == blas.Left {
mi = m - 1
ni = n
i1 = 1
i2 = 0
}
impl.Dormqr(side, trans, mi, ni, nq-1, a[1*lda:], lda, tau[:nq-1], c[i1*ldc+i2:], ldc, work, lwork)
}
work[0] = float64(lworkopt)
return
}
transt := blas.Trans
if trans == blas.Trans {
transt = blas.NoTrans
}
// Change the operation to get P depending on the size of the initial
// matrix to Dgebrd. The size matters due to the storage location of
// the off-diagonal elements.
if nq > k {
impl.Dormlq(side, transt, m, n, k, a, lda, tau, c, ldc, work, lwork)
} else if nq > 1 {
mi := m
ni := n - 1
i1 := 0
i2 := 1
if side == blas.Left {
mi = m - 1
ni = n
i1 = 1
i2 = 0
}
impl.Dormlq(side, transt, mi, ni, nq-1, a[1:], lda, tau, c[i1*ldc+i2:], ldc, work, lwork)
}
work[0] = float64(lworkopt)
}