mirror of
https://github.com/gonum/gonum.git
synced 2025-10-27 09:11:08 +08:00
198 lines
4.2 KiB
Go
198 lines
4.2 KiB
Go
// Copyright ©2014 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package stat
|
|
|
|
import (
|
|
"math/rand"
|
|
"testing"
|
|
|
|
"github.com/gonum/blas/goblas"
|
|
"github.com/gonum/floats"
|
|
"github.com/gonum/matrix/mat64"
|
|
)
|
|
|
|
func init() {
|
|
mat64.Register(goblas.Blas{})
|
|
}
|
|
|
|
func TestCovarianceMatrix(t *testing.T) {
|
|
for i, test := range []struct {
|
|
mat mat64.Matrix
|
|
weights mat64.Vec
|
|
r, c int
|
|
x []float64
|
|
}{
|
|
{
|
|
mat: mat64.NewDense(5, 2, []float64{
|
|
-2, -4,
|
|
-1, 2,
|
|
0, 0,
|
|
1, -2,
|
|
2, 4,
|
|
}),
|
|
weights: nil,
|
|
r: 2,
|
|
c: 2,
|
|
x: []float64{
|
|
2.5, 3,
|
|
3, 10,
|
|
},
|
|
}, {
|
|
mat: mat64.NewDense(5, 2, []float64{
|
|
-2, -4,
|
|
-1, 2,
|
|
0, 0,
|
|
1, -2,
|
|
2, 4,
|
|
}),
|
|
weights: []float64{
|
|
1.5,
|
|
.5,
|
|
1.5,
|
|
.5,
|
|
1,
|
|
},
|
|
r: 2,
|
|
c: 2,
|
|
x: []float64{
|
|
2.75, 4.5,
|
|
4.5, 11,
|
|
},
|
|
}, {
|
|
mat: mat64.NewDense(5, 2, []float64{
|
|
-2, -4,
|
|
-1, 2,
|
|
0, 0,
|
|
1, -2,
|
|
2, 4,
|
|
}),
|
|
weights: mat64.Vec([]float64{
|
|
1.5,
|
|
.5,
|
|
1.5,
|
|
.5,
|
|
1,
|
|
}),
|
|
r: 2,
|
|
c: 2,
|
|
x: []float64{
|
|
2.75, 4.5,
|
|
4.5, 11,
|
|
},
|
|
},
|
|
} {
|
|
c := CovarianceMatrix(nil, test.mat, test.weights).RawMatrix()
|
|
if c.Rows != test.r {
|
|
t.Errorf("%d: expected rows %d, found %d", i, test.r, c.Rows)
|
|
}
|
|
if c.Cols != test.c {
|
|
t.Errorf("%d: expected cols %d, found %d", i, test.c, c.Cols)
|
|
}
|
|
if !floats.Equal(test.x, c.Data) {
|
|
t.Errorf("%d: expected data %#q, found %#q", i, test.x, c.Data)
|
|
}
|
|
}
|
|
if !Panics(func() { CovarianceMatrix(nil, mat64.NewDense(5, 2, nil), mat64.Vec([]float64{})) }) {
|
|
t.Errorf("CovarianceMatrix did not panic with weight size mismatch")
|
|
}
|
|
if !Panics(func() { CovarianceMatrix(mat64.NewDense(1, 1, nil), mat64.NewDense(5, 2, nil), nil) }) {
|
|
t.Errorf("CovarianceMatrix did not panic with preallocation size mismatch")
|
|
}
|
|
|
|
}
|
|
|
|
// benchmarks
|
|
|
|
func randMat(r, c int) mat64.Matrix {
|
|
x := make([]float64, r*c)
|
|
for i := range x {
|
|
x[i] = rand.Float64()
|
|
}
|
|
return mat64.NewDense(r, c, x)
|
|
}
|
|
|
|
func benchmarkCovarianceMatrix(b *testing.B, m mat64.Matrix) {
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
CovarianceMatrix(nil, m, nil)
|
|
}
|
|
}
|
|
func benchmarkCovarianceMatrixInPlace(b *testing.B, m mat64.Matrix) {
|
|
_, c := m.Dims()
|
|
res := mat64.NewDense(c, c, nil)
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
CovarianceMatrix(res, m, nil)
|
|
}
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
|
|
// 10 * 10 elements
|
|
x := randMat(SMALL, SMALL)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
|
|
// 10 * 1000 elements
|
|
x := randMat(SMALL, MEDIUM)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
|
|
// 1000 * 10 elements
|
|
x := randMat(MEDIUM, SMALL)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
|
|
// 1000 * 1000 elements
|
|
x := randMat(MEDIUM, MEDIUM)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
|
|
// 1e5 * 10 elements
|
|
x := randMat(LARGE, SMALL)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
|
|
// 1e7 * 10 elements
|
|
x := randMat(HUGE, SMALL)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixSmallxSmallInPlace(b *testing.B) {
|
|
// 10 * 10 elements
|
|
x := randMat(SMALL, SMALL)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixSmallxMediumInPlace(b *testing.B) {
|
|
// 10 * 1000 elements
|
|
x := randMat(SMALL, MEDIUM)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixMediumxSmallInPlace(b *testing.B) {
|
|
// 1000 * 10 elements
|
|
x := randMat(MEDIUM, SMALL)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixMediumxMediumInPlace(b *testing.B) {
|
|
// 1000 * 1000 elements
|
|
x := randMat(MEDIUM, MEDIUM)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixLargexSmallInPlace(b *testing.B) {
|
|
// 1e5 * 10 elements
|
|
x := randMat(LARGE, SMALL)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixHugexSmallInPlace(b *testing.B) {
|
|
// 1e7 * 10 elements
|
|
x := randMat(HUGE, SMALL)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|