Files
gonum/spatial/r3/mat.go

308 lines
8.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r3
import "gonum.org/v1/gonum/mat"
// Mat represents a 3×3 matrix. Useful for rotation matrices and such.
// The zero value is usable as the 3×3 zero matrix.
type Mat struct {
data *array
}
var _ mat.Matrix = (*Mat)(nil)
// NewMat returns a new 3×3 matrix Mat type and populates its elements
// with values passed as argument in row-major form. If val argument
// is nil then NewMat returns a matrix filled with zeros.
func NewMat(val []float64) *Mat {
if len(val) == 9 {
return &Mat{arrayFrom(val)}
}
if val == nil {
return &Mat{new(array)}
}
panic(mat.ErrShape)
}
// Dims returns the number of rows and columns of this matrix.
// This method will always return 3×3 for a Mat.
func (m *Mat) Dims() (r, c int) { return 3, 3 }
// T returns the transpose of Mat. Changes in the receiver will be reflected in the returned matrix.
func (m *Mat) T() mat.Matrix { return mat.Transpose{Matrix: m} }
// Scale multiplies the elements of a by f, placing the result in the receiver.
//
// See the mat.Scaler interface for more information.
func (m *Mat) Scale(f float64, a mat.Matrix) {
r, c := a.Dims()
if r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
m.Set(i, j, f*a.At(i, j))
}
}
}
// MulVec returns the matrix-vector product M⋅v.
func (m *Mat) MulVec(v Vec) Vec {
if m.data == nil {
return Vec{}
}
return Vec{
X: v.X*m.At(0, 0) + v.Y*m.At(0, 1) + v.Z*m.At(0, 2),
Y: v.X*m.At(1, 0) + v.Y*m.At(1, 1) + v.Z*m.At(1, 2),
Z: v.X*m.At(2, 0) + v.Y*m.At(2, 1) + v.Z*m.At(2, 2),
}
}
// MulVecTrans returns the matrix-vector product Mᵀ⋅v.
func (m *Mat) MulVecTrans(v Vec) Vec {
if m.data == nil {
return Vec{}
}
return Vec{
X: v.X*m.At(0, 0) + v.Y*m.At(1, 0) + v.Z*m.At(2, 0),
Y: v.X*m.At(0, 1) + v.Y*m.At(1, 1) + v.Z*m.At(2, 1),
Z: v.X*m.At(0, 2) + v.Y*m.At(1, 2) + v.Z*m.At(2, 2),
}
}
// CloneFrom makes a copy of a into the receiver m.
// Mat expects a 3×3 input matrix.
func (m *Mat) CloneFrom(a mat.Matrix) {
r, c := a.Dims()
if r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
m.Set(i, j, a.At(i, j))
}
}
}
// Sub subtracts the matrix b from a, placing the result in the receiver.
// Sub will panic if the two matrices do not have the same shape.
func (m *Mat) Sub(a, b mat.Matrix) {
if r, c := a.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if r, c := b.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
m.Set(0, 0, a.At(0, 0)-b.At(0, 0))
m.Set(0, 1, a.At(0, 1)-b.At(0, 1))
m.Set(0, 2, a.At(0, 2)-b.At(0, 2))
m.Set(1, 0, a.At(1, 0)-b.At(1, 0))
m.Set(1, 1, a.At(1, 1)-b.At(1, 1))
m.Set(1, 2, a.At(1, 2)-b.At(1, 2))
m.Set(2, 0, a.At(2, 0)-b.At(2, 0))
m.Set(2, 1, a.At(2, 1)-b.At(2, 1))
m.Set(2, 2, a.At(2, 2)-b.At(2, 2))
}
// Add adds a and b element-wise, placing the result in the receiver. Add will panic if the two matrices do not have the same shape.
func (m *Mat) Add(a, b mat.Matrix) {
if r, c := a.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if r, c := b.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
m.Set(0, 0, a.At(0, 0)+b.At(0, 0))
m.Set(0, 1, a.At(0, 1)+b.At(0, 1))
m.Set(0, 2, a.At(0, 2)+b.At(0, 2))
m.Set(1, 0, a.At(1, 0)+b.At(1, 0))
m.Set(1, 1, a.At(1, 1)+b.At(1, 1))
m.Set(1, 2, a.At(1, 2)+b.At(1, 2))
m.Set(2, 0, a.At(2, 0)+b.At(2, 0))
m.Set(2, 1, a.At(2, 1)+b.At(2, 1))
m.Set(2, 2, a.At(2, 2)+b.At(2, 2))
}
// VecRow returns the elements in the ith row of the receiver.
func (m *Mat) VecRow(i int) Vec {
if i > 2 {
panic(mat.ErrRowAccess)
}
if m.data == nil {
return Vec{}
}
return Vec{X: m.At(i, 0), Y: m.At(i, 1), Z: m.At(i, 2)}
}
// VecCol returns the elements in the jth column of the receiver.
func (m *Mat) VecCol(j int) Vec {
if j > 2 {
panic(mat.ErrColAccess)
}
if m.data == nil {
return Vec{}
}
return Vec{X: m.At(0, j), Y: m.At(1, j), Z: m.At(2, j)}
}
// Outer calculates the outer product of the vectors x and y,
// where x and y are treated as column vectors, and stores the result in the receiver.
//
// m = alpha * x * yᵀ
func (m *Mat) Outer(alpha float64, x, y Vec) {
ax := alpha * x.X
ay := alpha * x.Y
az := alpha * x.Z
m.Set(0, 0, ax*y.X)
m.Set(0, 1, ax*y.Y)
m.Set(0, 2, ax*y.Z)
m.Set(1, 0, ay*y.X)
m.Set(1, 1, ay*y.Y)
m.Set(1, 2, ay*y.Z)
m.Set(2, 0, az*y.X)
m.Set(2, 1, az*y.Y)
m.Set(2, 2, az*y.Z)
}
// Det calculates the determinant of the receiver using the following formula
//
// ⎡a b c⎤
// m = ⎢d e f⎥
// ⎣g h i⎦
// det(m) = a(ei fh) b(di fg) + c(dh eg)
func (m *Mat) Det() float64 {
a := m.At(0, 0)
b := m.At(0, 1)
c := m.At(0, 2)
deta := m.At(1, 1)*m.At(2, 2) - m.At(1, 2)*m.At(2, 1)
detb := m.At(1, 0)*m.At(2, 2) - m.At(1, 2)*m.At(2, 0)
detc := m.At(1, 0)*m.At(2, 1) - m.At(1, 1)*m.At(2, 0)
return a*deta - b*detb + c*detc
}
// Skew sets the receiver to the 3×3 skew symmetric matrix
// (right hand system) of v.
//
// ⎡ 0 -z y⎤
// Skew({x,y,z}) = ⎢ z 0 -x⎥
// ⎣-y x 0⎦
func (m *Mat) Skew(v Vec) {
m.Set(0, 0, 0)
m.Set(0, 1, -v.Z)
m.Set(0, 2, v.Y)
m.Set(1, 0, v.Z)
m.Set(1, 1, 0)
m.Set(1, 2, -v.X)
m.Set(2, 0, -v.Y)
m.Set(2, 1, v.X)
m.Set(2, 2, 0)
}
// Hessian sets the receiver to the Hessian matrix of the scalar field at the point p,
// approximated using finite differences with the given step sizes.
// The field is evaluated at points in the area surrounding p by adding
// at most 2 components of step to p. Hessian expects the field's second partial
// derivatives are all continuous for correct results.
func (m *Mat) Hessian(p, step Vec, field func(Vec) float64) {
dx := Vec{X: step.X}
dy := Vec{Y: step.Y}
dz := Vec{Z: step.Z}
fp := field(p)
fxp := field(Add(p, dx))
fxm := field(Sub(p, dx))
fxx := (fxp - 2*fp + fxm) / (step.X * step.X)
fyp := field(Add(p, dy))
fym := field(Sub(p, dy))
fyy := (fyp - 2*fp + fym) / (step.Y * step.Y)
aux := Add(dx, dy)
fxyp := field(Add(p, aux))
fxym := field(Sub(p, aux))
fxy := (fxyp - fxp - fyp + 2*fp - fxm - fym + fxym) / (2 * step.X * step.Y)
fzp := field(Add(p, dz))
fzm := field(Sub(p, dz))
fzz := (fzp - 2*fp + fzm) / (step.Z * step.Z)
aux = Add(dx, dz)
fxzp := field(Add(p, aux))
fxzm := field(Sub(p, aux))
fxz := (fxzp - fxp - fzp + 2*fp - fxm - fzm + fxzm) / (2 * step.X * step.Z)
aux = Add(dy, dz)
fyzp := field(Add(p, aux))
fyzm := field(Sub(p, aux))
fyz := (fyzp - fyp - fzp + 2*fp - fym - fzm + fyzm) / (2 * step.Y * step.Z)
m.Set(0, 0, fxx)
m.Set(0, 1, fxy)
m.Set(0, 2, fxz)
m.Set(1, 0, fxy)
m.Set(1, 1, fyy)
m.Set(1, 2, fyz)
m.Set(2, 0, fxz)
m.Set(2, 1, fyz)
m.Set(2, 2, fzz)
}
// Jacobian sets the receiver to the Jacobian matrix of the vector field at
// the point p, approximated using finite differences with the given step sizes.
//
// The Jacobian matrix J is the matrix of all first-order partial derivatives of f.
// If f maps an 3-dimensional vector x to an 3-dimensional vector y = f(x), J is
// a 3×3 matrix whose elements are given as
//
// J_{i,j} = ∂f_i/∂x_j,
//
// or expanded out
//
// [ ∂f_1/∂x_1 ∂f_1/∂x_2 ∂f_1/∂x_3 ]
// J = [ ∂f_2/∂x_1 ∂f_2/∂x_2 ∂f_2/∂x_3 ]
// [ ∂f_3/∂x_1 ∂f_3/∂x_2 ∂f_3/∂x_3 ]
//
// Jacobian expects the field's first order partial derivatives are all
// continuous for correct results.
func (m *Mat) Jacobian(p, step Vec, field func(Vec) Vec) {
dx := Vec{X: step.X}
dy := Vec{Y: step.Y}
dz := Vec{Z: step.Z}
dfdx := Scale(0.5/step.X, Sub(field(Add(p, dx)), field(Sub(p, dx))))
dfdy := Scale(0.5/step.Y, Sub(field(Add(p, dy)), field(Sub(p, dy))))
dfdz := Scale(0.5/step.Z, Sub(field(Add(p, dz)), field(Sub(p, dz))))
m.Set(0, 0, dfdx.X)
m.Set(0, 1, dfdy.X)
m.Set(0, 2, dfdz.X)
m.Set(1, 0, dfdx.Y)
m.Set(1, 1, dfdy.Y)
m.Set(1, 2, dfdz.Y)
m.Set(2, 0, dfdx.Z)
m.Set(2, 1, dfdy.Z)
m.Set(2, 2, dfdz.Z)
}