Files
gonum/lapack/gonum/dgels.go
2023-10-06 22:09:27 +02:00

221 lines
6.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dgels finds a minimum-norm solution based on the matrices A and B using the
// QR or LQ factorization. Dgels returns false if the matrix
// A is singular, and true if this solution was successfully found.
//
// The minimization problem solved depends on the input parameters.
//
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
// is minimized.
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
// A * X = B.
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
// Aᵀ * X = B.
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
// is minimized.
//
// Note that the least-squares solutions (cases 1 and 3) perform the minimization
// per column of B. This is not the same as finding the minimum-norm matrix.
//
// The matrix A is a general matrix of size m×n and is modified during this call.
// The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
// the elements of b specify the input matrix B. B has size m×nrhs if
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
// this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
//
// work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic
// otherwise. A longer work will enable blocked algorithms to be called.
// In the special case that lwork == -1, work[0] will be set to the optimal working
// length.
func (impl Implementation) Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool {
mn := min(m, n)
minwrk := mn + max(mn, nrhs)
switch {
case trans != blas.NoTrans && trans != blas.Trans && trans != blas.ConjTrans:
panic(badTrans)
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case nrhs < 0:
panic(nrhsLT0)
case lda < max(1, n):
panic(badLdA)
case ldb < max(1, nrhs):
panic(badLdB)
case lwork < max(1, minwrk) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if mn == 0 || nrhs == 0 {
impl.Dlaset(blas.All, max(m, n), nrhs, 0, 0, b, ldb)
work[0] = 1
return true
}
// Find optimal block size.
var nb int
if m >= n {
nb = impl.Ilaenv(1, "DGEQRF", " ", m, n, -1, -1)
if trans != blas.NoTrans {
nb = max(nb, impl.Ilaenv(1, "DORMQR", "LN", m, nrhs, n, -1))
} else {
nb = max(nb, impl.Ilaenv(1, "DORMQR", "LT", m, nrhs, n, -1))
}
} else {
nb = impl.Ilaenv(1, "DGELQF", " ", m, n, -1, -1)
if trans != blas.NoTrans {
nb = max(nb, impl.Ilaenv(1, "DORMLQ", "LT", n, nrhs, m, -1))
} else {
nb = max(nb, impl.Ilaenv(1, "DORMLQ", "LN", n, nrhs, m, -1))
}
}
wsize := max(1, mn+max(mn, nrhs)*nb)
work[0] = float64(wsize)
if lwork == -1 {
return true
}
switch {
case len(a) < (m-1)*lda+n:
panic(shortA)
case len(b) < (max(m, n)-1)*ldb+nrhs:
panic(shortB)
}
// Scale the input matrices if they contain extreme values.
smlnum := dlamchS / dlamchP
bignum := 1 / smlnum
anrm := impl.Dlange(lapack.MaxAbs, m, n, a, lda, nil)
var iascl int
if anrm > 0 && anrm < smlnum {
impl.Dlascl(lapack.General, 0, 0, anrm, smlnum, m, n, a, lda)
iascl = 1
} else if anrm > bignum {
impl.Dlascl(lapack.General, 0, 0, anrm, bignum, m, n, a, lda)
} else if anrm == 0 {
// Matrix is all zeros.
impl.Dlaset(blas.All, max(m, n), nrhs, 0, 0, b, ldb)
return true
}
brow := m
if trans != blas.NoTrans {
brow = n
}
bnrm := impl.Dlange(lapack.MaxAbs, brow, nrhs, b, ldb, nil)
ibscl := 0
if bnrm > 0 && bnrm < smlnum {
impl.Dlascl(lapack.General, 0, 0, bnrm, smlnum, brow, nrhs, b, ldb)
ibscl = 1
} else if bnrm > bignum {
impl.Dlascl(lapack.General, 0, 0, bnrm, bignum, brow, nrhs, b, ldb)
ibscl = 2
}
// Solve the minimization problem using a QR or an LQ decomposition.
var scllen int
if m >= n {
impl.Dgeqrf(m, n, a, lda, work[:n], work[mn:], lwork-mn)
if trans == blas.NoTrans {
impl.Dormqr(blas.Left, blas.Trans, m, nrhs, n,
a, lda,
work[:n],
b, ldb,
work[mn:], lwork-mn)
ok := impl.Dtrtrs(blas.Upper, blas.NoTrans, blas.NonUnit, n, nrhs,
a, lda,
b, ldb)
if !ok {
return false
}
scllen = n
} else {
ok := impl.Dtrtrs(blas.Upper, blas.Trans, blas.NonUnit, n, nrhs,
a, lda,
b, ldb)
if !ok {
return false
}
for i := n; i < m; i++ {
for j := 0; j < nrhs; j++ {
b[i*ldb+j] = 0
}
}
impl.Dormqr(blas.Left, blas.NoTrans, m, nrhs, n,
a, lda,
work[:n],
b, ldb,
work[mn:], lwork-mn)
scllen = m
}
} else {
impl.Dgelqf(m, n, a, lda, work, work[mn:], lwork-mn)
if trans == blas.NoTrans {
ok := impl.Dtrtrs(blas.Lower, blas.NoTrans, blas.NonUnit,
m, nrhs,
a, lda,
b, ldb)
if !ok {
return false
}
for i := m; i < n; i++ {
for j := 0; j < nrhs; j++ {
b[i*ldb+j] = 0
}
}
impl.Dormlq(blas.Left, blas.Trans, n, nrhs, m,
a, lda,
work,
b, ldb,
work[mn:], lwork-mn)
scllen = n
} else {
impl.Dormlq(blas.Left, blas.NoTrans, n, nrhs, m,
a, lda,
work,
b, ldb,
work[mn:], lwork-mn)
ok := impl.Dtrtrs(blas.Lower, blas.Trans, blas.NonUnit,
m, nrhs,
a, lda,
b, ldb)
if !ok {
return false
}
}
}
// Adjust answer vector based on scaling.
if iascl == 1 {
impl.Dlascl(lapack.General, 0, 0, anrm, smlnum, scllen, nrhs, b, ldb)
}
if iascl == 2 {
impl.Dlascl(lapack.General, 0, 0, anrm, bignum, scllen, nrhs, b, ldb)
}
if ibscl == 1 {
impl.Dlascl(lapack.General, 0, 0, smlnum, bnrm, scllen, nrhs, b, ldb)
}
if ibscl == 2 {
impl.Dlascl(lapack.General, 0, 0, bignum, bnrm, scllen, nrhs, b, ldb)
}
work[0] = float64(wsize)
return true
}