Files
gonum/diff/fd/jacobian.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

206 lines
4.8 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import (
"sync"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
type JacobianSettings struct {
Formula Formula
OriginValue []float64
Step float64
Concurrent bool
}
// Jacobian approximates the Jacobian matrix of a vector-valued function f at
// the location x and stores the result in-place into dst.
//
// Finite difference formula and other options are specified by settings. If
// settings is nil, the Jacobian will be estimated using the Forward formula and
// a default step size.
//
// The Jacobian matrix J is the matrix of all first-order partial derivatives of f.
// If f maps an n-dimensional vector x to an m-dimensional vector y = f(x), J is
// an m×n matrix whose elements are given as
//
// J_{i,j} = ∂f_i/∂x_j,
//
// or expanded out
//
// [ ∂f_1/∂x_1 ... ∂f_1/∂x_n ]
// [ . . . ]
// J = [ . . . ]
// [ . . . ]
// [ ∂f_m/∂x_1 ... ∂f_m/∂x_n ]
//
// dst must be non-nil, the number of its columns must equal the length of x, and
// the derivative order of the formula must be 1, otherwise Jacobian will panic.
func Jacobian(dst *mat.Dense, f func(y, x []float64), x []float64, settings *JacobianSettings) {
n := len(x)
if n == 0 {
panic("jacobian: x has zero length")
}
m, c := dst.Dims()
if c != n {
panic("jacobian: mismatched matrix size")
}
// Default settings.
formula := Forward
step := formula.Step
var originValue []float64
var concurrent bool
// Use user settings if provided.
if settings != nil {
if !settings.Formula.isZero() {
formula = settings.Formula
step = formula.Step
checkFormula(formula)
if formula.Derivative != 1 {
panic(badDerivOrder)
}
}
if settings.Step != 0 {
step = settings.Step
}
originValue = settings.OriginValue
if originValue != nil && len(originValue) != m {
panic("jacobian: mismatched OriginValue slice length")
}
concurrent = settings.Concurrent
}
evals := n * len(formula.Stencil)
for _, pt := range formula.Stencil {
if pt.Loc == 0 {
evals -= n - 1
break
}
}
nWorkers := computeWorkers(concurrent, evals)
if nWorkers == 1 {
jacobianSerial(dst, f, x, originValue, formula, step)
return
}
jacobianConcurrent(dst, f, x, originValue, formula, step, nWorkers)
}
func jacobianSerial(dst *mat.Dense, f func([]float64, []float64), x, origin []float64, formula Formula, step float64) {
m, n := dst.Dims()
xcopy := make([]float64, n)
y := make([]float64, m)
col := make([]float64, m)
for j := 0; j < n; j++ {
for i := range col {
col[i] = 0
}
for _, pt := range formula.Stencil {
if pt.Loc == 0 {
if origin == nil {
origin = make([]float64, m)
copy(xcopy, x)
f(origin, xcopy)
}
floats.AddScaled(col, pt.Coeff, origin)
} else {
copy(xcopy, x)
xcopy[j] += pt.Loc * step
f(y, xcopy)
floats.AddScaled(col, pt.Coeff, y)
}
}
dst.SetCol(j, col)
}
dst.Scale(1/step, dst)
}
func jacobianConcurrent(dst *mat.Dense, f func([]float64, []float64), x, origin []float64, formula Formula, step float64, nWorkers int) {
m, n := dst.Dims()
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
dst.Set(i, j, 0)
}
}
var (
wg sync.WaitGroup
mu = make([]sync.Mutex, n) // Guard access to individual columns.
)
worker := func(jobs <-chan jacJob) {
defer wg.Done()
xcopy := make([]float64, n)
y := make([]float64, m)
yVec := mat.NewVecDense(m, y)
var col mat.VecDense
for job := range jobs {
copy(xcopy, x)
xcopy[job.j] += job.pt.Loc * step
f(y, xcopy)
col.ColViewOf(dst, job.j)
mu[job.j].Lock()
col.AddScaledVec(&col, job.pt.Coeff, yVec)
mu[job.j].Unlock()
}
}
jobs := make(chan jacJob, nWorkers)
for i := 0; i < nWorkers; i++ {
wg.Add(1)
go worker(jobs)
}
var hasOrigin bool
for _, pt := range formula.Stencil {
if pt.Loc == 0 {
hasOrigin = true
continue
}
for j := 0; j < n; j++ {
jobs <- jacJob{j, pt}
}
}
close(jobs)
if hasOrigin && origin == nil {
wg.Add(1)
go func() {
defer wg.Done()
origin = make([]float64, m)
xcopy := make([]float64, n)
copy(xcopy, x)
f(origin, xcopy)
}()
}
wg.Wait()
if hasOrigin {
// The formula evaluated at x, we need to add scaled origin to
// all columns of dst. Iterate again over all Formula points
// because we don't forbid repeated locations.
originVec := mat.NewVecDense(m, origin)
for _, pt := range formula.Stencil {
if pt.Loc != 0 {
continue
}
var col mat.VecDense
for j := 0; j < n; j++ {
col.ColViewOf(dst, j)
col.AddScaledVec(&col, pt.Coeff, originVec)
}
}
}
dst.Scale(1/step, dst)
}
type jacJob struct {
j int
pt Point
}