Files
gonum/optimize/cmaes.go
Brendan Tracey 996b88e8f8 optimize: completely overhaul Global (#352)
* optimize: completely overhaul Global

The previous implementation of Global was a minefield for incorrectly implementing global optimization methods. It was very difficult to correctly implement methods (both of the provided methods were incorrect), and the resulting code is very ugly. This commit switches to use channels to communicate, allowing a more clear ordering of concurrent code. This also enables better shutdown of methods.

In addition to the main fix of Global, this refactors the two Global methods to use the updated interface, and makes some small improvements that were previously not possible. In addition, there are some small cleanups of Local to better match between the two calls.

If anyone has been curious about what is meant by 'Don't communicate by sharing memory, share memory by communicating' this is it, and why.

* respond to PR comments

* make constants

* simplify termination logic

* optimize: simplify stats collection

* overhaul documentation and respond to PR comments

* implement PR requests

* clean up cmaes
2018-02-05 08:44:02 -07:00

472 lines
14 KiB
Go

// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"math"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat/distmv"
)
// TODO(btracey): If we ever implement the traditional CMA-ES algorithm, provide
// the base explanation there, and modify this description to just
// describe the differences.
// CmaEsChol implements the covariance matrix adaptation evolution strategy (CMA-ES)
// based on the Cholesky decomposition. The full algorithm is described in
// Krause, Oswin, Dídac Rodríguez Arbonès, and Christian Igel. "CMA-ES with
// optimal covariance update and storage complexity." Advances in Neural
// Information Processing Systems. 2016.
// https://papers.nips.cc/paper/6457-cma-es-with-optimal-covariance-update-and-storage-complexity.pdf
// CMA-ES is a global optimization method that progressively adapts a population
// of samples. CMA-ES combines techniques from local optimization with global
// optimization. Specifically, the CMA-ES algorithm uses an initial multivariate
// normal distribution to generate a population of input locations. The input locations
// with the lowest function values are used to update the parameters of the normal
// distribution, a new set of input locations are generated, and this procedure
// is iterated until convergence.
//
// As the normal distribution is progressively updated according to the best samples,
// it can be that the mean of the distribution is updated in a gradient-descent
// like fashion, followed by a shrinking covariance.
// It is recommended that the algorithm be run multiple times (with different
// InitMean) to have a better chance of finding the global minimum.
//
// The CMA-ES-Chol algorithm differs from the standard CMA-ES algorithm in that
// it directly updates the Cholesky decomposition of the normal distribution.
// This changes the runtime from O(dimension^3) to O(dimension^2*population)
// The evolution of the multi-variate normal will be similar to the baseline
// CMA-ES algorithm, but the covariance update equation is not identical.
//
// For more information about the CMA-ES algorithm, see
// https://en.wikipedia.org/wiki/CMA-ES
// https://arxiv.org/pdf/1604.00772.pdf
type CmaEsChol struct {
// InitStepSize sets the initial size of the covariance matrix adaptation.
// If InitStepSize is 0, a default value of 0.5 is used. InitStepSize cannot
// be negative, or CmaEsChol will panic.
InitStepSize float64
// Population sets the population size for the algorithm. If Population is
// 0, a default value of 4 + math.Floor(3*math.Log(float64(dim))) is used.
// Population cannot be negative or CmaEsChol will panic.
Population int
// InitMean is the initial mean of the multivariate normal for sampling
// input locations. If InitMean is nil, the zero vector is used. If InitMean
// is not nil, it must have length equal to the problem dimension.
InitMean []float64
// InitCholesky specifies the Cholesky decomposition of the covariance
// matrix for the initial sampling distribution. If InitCholesky is nil,
// a default value of I is used. If it is non-nil, then it must have
// InitCholesky.Size() be equal to the problem dimension.
InitCholesky *mat.Cholesky
// StopLogDet sets the threshold for stopping the optimization if the
// distribution becomes too peaked. The log determinant is a measure of the
// (log) "volume" of the normal distribution, and when it is too small
// the samples are almost the same. If the log determinant of the covariance
// matrix becomes less than StopLogDet, the optimization run is concluded.
// If StopLogDet is 0, a default value of dim*log(1e-16) is used.
// If StopLogDet is NaN, the stopping criterion is not used, though
// this can cause numeric instabilities in the algorithm.
StopLogDet float64
// ForgetBest, when true, does not track the best overall function value found,
// instead returning the new best sample in each iteration. If ForgetBest
// is false, then the minimum value returned will be the lowest across all
// iterations, regardless of when that sample was generated.
ForgetBest bool
// Src allows a random number generator to be supplied for generating samples.
// If Src is nil the generator in golang.org/x/math/rand is used.
Src *rand.Rand
// Fixed algorithm parameters.
dim int
pop int
weights []float64
muEff float64
cc, cs, c1, cmu, ds float64
eChi float64
// Function data.
xs *mat.Dense
fs []float64
// Adaptive algorithm parameters.
invSigma float64 // inverse of the sigma parameter
pc, ps []float64
mean []float64
chol mat.Cholesky
// Overall best.
bestX []float64
bestF float64
// Synchronization.
sentIdx int
receivedIdx int
operation chan<- GlobalTask
updateErr error
}
var (
_ Statuser = (*CmaEsChol)(nil)
_ GlobalMethod = (*CmaEsChol)(nil)
)
func (cma *CmaEsChol) Needs() struct{ Gradient, Hessian bool } {
return struct{ Gradient, Hessian bool }{false, false}
}
func (cma *CmaEsChol) methodConverged() Status {
sd := cma.StopLogDet
switch {
case math.IsNaN(sd):
return NotTerminated
case sd == 0:
sd = float64(cma.dim) * -36.8413614879 // ln(1e-16)
}
if cma.chol.LogDet() < sd {
return MethodConverge
}
return NotTerminated
}
// Status returns the status of the method.
func (cma *CmaEsChol) Status() (Status, error) {
if cma.updateErr != nil {
return Failure, cma.updateErr
}
return cma.methodConverged(), nil
}
func (cma *CmaEsChol) InitGlobal(dim, tasks int) int {
if dim <= 0 {
panic(nonpositiveDimension)
}
if tasks < 0 {
panic(negativeTasks)
}
// Initialize the parameters
if cma.InitMean != nil && len(cma.InitMean) != dim {
panic("cma-es-chol: initial mean must be nil or have length equal to dimension")
}
// Set fixed algorithm parameters.
// Parameter values are from https://arxiv.org/pdf/1604.00772.pdf .
cma.dim = dim
cma.pop = cma.Population
n := float64(dim)
if cma.pop == 0 {
cma.pop = 4 + int(3*math.Log(n)) // Note the implicit floor.
} else if cma.pop < 0 {
panic("cma-es-chol: negative population size")
}
mu := cma.pop / 2
cma.weights = resize(cma.weights, mu)
for i := range cma.weights {
v := math.Log(float64(mu)+0.5) - math.Log(float64(i)+1)
cma.weights[i] = v
}
floats.Scale(1/floats.Sum(cma.weights), cma.weights)
cma.muEff = 0
for _, v := range cma.weights {
cma.muEff += v * v
}
cma.muEff = 1 / cma.muEff
cma.cc = (4 + cma.muEff/n) / (n + 4 + 2*cma.muEff/n)
cma.cs = (cma.muEff + 2) / (n + cma.muEff + 5)
cma.c1 = 2 / ((n+1.3)*(n+1.3) + cma.muEff)
cma.cmu = math.Min(1-cma.c1, 2*(cma.muEff-2+1/cma.muEff)/((n+2)*(n+2)+cma.muEff))
cma.ds = 1 + 2*math.Max(0, math.Sqrt((cma.muEff-1)/(n+1))-1) + cma.cs
// E[chi] is taken from https://en.wikipedia.org/wiki/CMA-ES (there
// listed as E[||N(0,1)||]).
cma.eChi = math.Sqrt(n) * (1 - 1.0/(4*n) + 1/(21*n*n))
// Allocate memory for function data.
cma.xs = mat.NewDense(cma.pop, dim, nil)
cma.fs = resize(cma.fs, cma.pop)
// Allocate and initialize adaptive parameters.
cma.invSigma = 1 / cma.InitStepSize
if cma.InitStepSize == 0 {
cma.invSigma = 10.0 / 3
} else if cma.InitStepSize < 0 {
panic("cma-es-chol: negative initial step size")
}
cma.pc = resize(cma.pc, dim)
for i := range cma.pc {
cma.pc[i] = 0
}
cma.ps = resize(cma.ps, dim)
for i := range cma.ps {
cma.ps[i] = 0
}
cma.mean = resize(cma.mean, dim)
if cma.InitMean != nil {
copy(cma.mean, cma.InitMean)
}
if cma.InitCholesky != nil {
if cma.InitCholesky.Size() != dim {
panic("cma-es-chol: incorrect InitCholesky size")
}
cma.chol.Clone(cma.InitCholesky)
} else {
// Set the initial Cholesky to I.
b := mat.NewDiagonal(dim, nil)
for i := 0; i < dim; i++ {
b.SetSymBand(i, i, 1)
}
var chol mat.Cholesky
ok := chol.Factorize(b)
if !ok {
panic("cma-es-chol: bad cholesky. shouldn't happen")
}
cma.chol = chol
}
cma.bestX = resize(cma.bestX, dim)
cma.bestF = math.Inf(1)
cma.sentIdx = 0
cma.receivedIdx = 0
cma.operation = nil
cma.updateErr = nil
t := min(tasks, cma.pop)
return t
}
func (cma *CmaEsChol) sendInitTasks(tasks []GlobalTask) {
for i, task := range tasks {
cma.sendTask(i, task)
}
cma.sentIdx = len(tasks)
}
// sendTask generates a sample and sends the task. It does not update the cma index.
func (cma *CmaEsChol) sendTask(idx int, task GlobalTask) {
task.ID = idx
task.Op = FuncEvaluation
distmv.NormalRand(cma.xs.RawRowView(idx), cma.mean, &cma.chol, cma.Src)
copy(task.X, cma.xs.RawRowView(idx))
cma.operation <- task
}
// bestIdx returns the best index in the functions. Returns -1 if all values
// are NaN.
func (cma *CmaEsChol) bestIdx() int {
best := -1
bestVal := math.Inf(1)
for i, v := range cma.fs {
if math.IsNaN(v) {
continue
}
// Use equality in case somewhere evaluates to +inf.
if v <= bestVal {
best = i
bestVal = v
}
}
return best
}
// findBestAndUpdateTask finds the best task in the current list, updates the
// new best overall, and then stores the best location into task.
func (cma *CmaEsChol) findBestAndUpdateTask(task GlobalTask) GlobalTask {
// Find and update the best location.
// Don't use floats because there may be NaN values.
best := cma.bestIdx()
bestF := math.NaN()
bestX := cma.xs.RawRowView(0)
if best != -1 {
bestF = cma.fs[best]
bestX = cma.xs.RawRowView(best)
}
if cma.ForgetBest {
task.F = bestF
copy(task.X, bestX)
} else {
if bestF < cma.bestF {
cma.bestF = bestF
copy(cma.bestX, bestX)
}
task.F = cma.bestF
copy(task.X, cma.bestX)
}
return task
}
func (cma *CmaEsChol) RunGlobal(operations chan<- GlobalTask, results <-chan GlobalTask, tasks []GlobalTask) {
cma.operation = operations
// Send the initial tasks. We know there are at most as many tasks as elements
// of the population.
cma.sendInitTasks(tasks)
Loop:
for {
result := <-results
switch result.Op {
default:
panic("unknown operation")
case PostIteration:
break Loop
case MajorIteration:
// The last thing we did was update all of the tasks and send the
// major iteration. Now we can send a group of tasks again.
cma.sendInitTasks(tasks)
case FuncEvaluation:
cma.receivedIdx++
cma.fs[result.ID] = result.F
switch {
case cma.sentIdx < cma.pop:
// There are still tasks to evaluate. Send the next.
cma.sendTask(cma.sentIdx, result)
cma.sentIdx++
case cma.receivedIdx < cma.pop:
// All the tasks have been sent, but not all of them have been received.
// Need to wait until all are back.
continue Loop
default:
// All of the evaluations have been received.
if cma.receivedIdx != cma.pop {
panic("bad logic")
}
cma.receivedIdx = 0
cma.sentIdx = 0
task := cma.findBestAndUpdateTask(result)
// Update the parameters and send a MajorIteration or a convergence.
err := cma.update()
// Kill the existing data.
for i := range cma.fs {
cma.fs[i] = math.NaN()
cma.xs.Set(i, 0, math.NaN())
}
switch {
case err != nil:
cma.updateErr = err
task.Op = MethodDone
case cma.methodConverged() != NotTerminated:
task.Op = MethodDone
default:
task.Op = MajorIteration
task.ID = -1
}
operations <- task
}
}
}
// Been told to stop. Clean up.
// Need to see best of our evaluated tasks so far. Should instead just
// collect, then see.
for task := range results {
switch task.Op {
case MajorIteration:
case FuncEvaluation:
cma.fs[task.ID] = task.F
default:
panic("unknown operation")
}
}
// Send the new best value if the evaluation is better than any we've
// found so far. Keep this separate from findBestAndUpdateTask so that
// we only send an iteration if we find a better location.
if !cma.ForgetBest {
best := cma.bestIdx()
if best != -1 && cma.fs[best] < cma.bestF {
task := tasks[0]
task.F = cma.fs[best]
copy(task.X, cma.xs.RawRowView(best))
task.Op = MajorIteration
task.ID = -1
operations <- task
}
}
close(operations)
}
// update computes the new parameters (mean, cholesky, etc.). Does not update
// any of the synchronization parameters (taskIdx).
func (cma *CmaEsChol) update() error {
// Sort the function values to find the elite samples.
ftmp := make([]float64, cma.pop)
copy(ftmp, cma.fs)
indexes := make([]int, cma.pop)
for i := range indexes {
indexes[i] = i
}
sort.Sort(bestSorter{F: ftmp, Idx: indexes})
meanOld := make([]float64, len(cma.mean))
copy(meanOld, cma.mean)
// m_{t+1} = \sum_{i=1}^mu w_i x_i
for i := range cma.mean {
cma.mean[i] = 0
}
for i, w := range cma.weights {
idx := indexes[i] // index of teh 1337 sample.
floats.AddScaled(cma.mean, w, cma.xs.RawRowView(idx))
}
meanDiff := make([]float64, len(cma.mean))
floats.SubTo(meanDiff, cma.mean, meanOld)
// p_{c,t+1} = (1-c_c) p_{c,t} + \sqrt(c_c*(2-c_c)*mueff) (m_{t+1}-m_t)/sigma_t
floats.Scale(1-cma.cc, cma.pc)
scaleC := math.Sqrt(cma.cc*(2-cma.cc)*cma.muEff) * cma.invSigma
floats.AddScaled(cma.pc, scaleC, meanDiff)
// p_{sigma, t+1} = (1-c_sigma) p_{sigma,t} + \sqrt(c_s*(2-c_s)*mueff) A_t^-1 (m_{t+1}-m_t)/sigma_t
floats.Scale(1-cma.cs, cma.ps)
// First compute A_t^-1 (m_{t+1}-m_t), then add the scaled vector.
tmp := make([]float64, cma.dim)
tmpVec := mat.NewVecDense(cma.dim, tmp)
diffVec := mat.NewVecDense(cma.dim, meanDiff)
err := tmpVec.SolveVec(cma.chol.RawU().T(), diffVec)
if err != nil {
return err
}
scaleS := math.Sqrt(cma.cs*(2-cma.cs)*cma.muEff) * cma.invSigma
floats.AddScaled(cma.ps, scaleS, tmp)
// Compute the update to A.
scaleChol := 1 - cma.c1 - cma.cmu
if scaleChol == 0 {
scaleChol = math.SmallestNonzeroFloat64 // enough to kill the old data, but still non-zero.
}
cma.chol.Scale(scaleChol, &cma.chol)
cma.chol.SymRankOne(&cma.chol, cma.c1, mat.NewVecDense(cma.dim, cma.pc))
for i, w := range cma.weights {
idx := indexes[i]
floats.SubTo(tmp, cma.xs.RawRowView(idx), meanOld)
cma.chol.SymRankOne(&cma.chol, cma.cmu*w*cma.invSigma, tmpVec)
}
// sigma_{t+1} = sigma_t exp(c_sigma/d_sigma * norm(p_{sigma,t+1}/ E[chi] -1)
normPs := floats.Norm(cma.ps, 2)
cma.invSigma /= math.Exp(cma.cs / cma.ds * (normPs/cma.eChi - 1))
return nil
}
type bestSorter struct {
F []float64
Idx []int
}
func (b bestSorter) Len() int {
return len(b.F)
}
func (b bestSorter) Less(i, j int) bool {
return b.F[i] < b.F[j]
}
func (b bestSorter) Swap(i, j int) {
b.F[i], b.F[j] = b.F[j], b.F[i]
b.Idx[i], b.Idx[j] = b.Idx[j], b.Idx[i]
}