Files
gonum/search/internals.go
2014-04-07 16:30:00 +09:30

213 lines
5.1 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package search
import (
"container/heap"
"github.com/gonum/graph"
"github.com/gonum/graph/concrete"
)
type searchFuncs struct {
successors, predecessors, neighbors func(graph.Node) []graph.Node
isSuccessor, isPredecessor, isNeighbor func(graph.Node, graph.Node) bool
cost graph.CostFunc
heuristicCost graph.HeuristicCostFunc
edgeTo, edgeBetween func(graph.Node, graph.Node) graph.Edge
}
func genIsSuccessor(gr graph.DirectedGraph) func(graph.Node, graph.Node) bool {
return func(node, succ graph.Node) bool {
return gr.EdgeTo(node, succ) != nil
}
}
func genIsPredecessor(gr graph.DirectedGraph) func(graph.Node, graph.Node) bool {
return func(node, succ graph.Node) bool {
return gr.EdgeTo(succ, node) != nil
}
}
func genIsNeighbor(gr graph.Graph) func(graph.Node, graph.Node) bool {
return func(node, succ graph.Node) bool {
return gr.EdgeBetween(succ, node) != nil
}
}
// Sets up the cost functions and successor functions so I don't have to do a type switch every
// time. This almost always does more work than is necessary, but since it's only executed once
// per function, and graph functions are rather costly, the "extra work" should be negligible.
func setupFuncs(gr graph.Graph, cost graph.CostFunc, heuristicCost graph.HeuristicCostFunc) searchFuncs {
sf := searchFuncs{}
switch g := gr.(type) {
case graph.DirectedGraph:
sf.successors = g.Successors
sf.predecessors = g.Predecessors
sf.neighbors = g.Neighbors
sf.isSuccessor = genIsSuccessor(g)
sf.isPredecessor = genIsPredecessor(g)
sf.isNeighbor = genIsNeighbor(g)
sf.edgeBetween = g.EdgeBetween
sf.edgeTo = g.EdgeTo
default:
sf.successors = g.Neighbors
sf.predecessors = g.Neighbors
sf.neighbors = g.Neighbors
isNeighbor := genIsNeighbor(g)
sf.isSuccessor = isNeighbor
sf.isPredecessor = isNeighbor
sf.isNeighbor = isNeighbor
sf.edgeBetween = g.EdgeBetween
sf.edgeTo = g.EdgeBetween
}
if heuristicCost != nil {
sf.heuristicCost = heuristicCost
} else {
if g, ok := gr.(graph.HeuristicCoster); ok {
sf.heuristicCost = g.HeuristicCost
} else {
sf.heuristicCost = NullHeuristic
}
}
if cost != nil {
sf.cost = cost
} else {
if g, ok := gr.(graph.Coster); ok {
sf.cost = g.Cost
} else {
sf.cost = UniformCost
}
}
return sf
}
/** Sorts a list of edges by weight, agnostic to repeated edges as well as direction **/
type edgeSorter []concrete.WeightedEdge
func (el edgeSorter) Len() int {
return len(el)
}
func (el edgeSorter) Less(i, j int) bool {
return el[i].Cost < el[j].Cost
}
func (el edgeSorter) Swap(i, j int) {
el[i], el[j] = el[j], el[i]
}
/** Keeps track of a node's scores so they can be used in a priority queue for A* **/
type internalNode struct {
graph.Node
gscore, fscore float64
}
/* A* stuff */
type aStarPriorityQueue struct {
indexList map[int]int
nodes []internalNode
}
func (pq *aStarPriorityQueue) Less(i, j int) bool {
// As the heap documentation says, a priority queue is listed if the actual values
// are treated as if they were negative
return pq.nodes[i].fscore < pq.nodes[j].fscore
}
func (pq *aStarPriorityQueue) Swap(i, j int) {
pq.indexList[pq.nodes[i].ID()] = j
pq.indexList[pq.nodes[j].ID()] = i
pq.nodes[i], pq.nodes[j] = pq.nodes[j], pq.nodes[i]
}
func (pq *aStarPriorityQueue) Len() int {
return len(pq.nodes)
}
func (pq *aStarPriorityQueue) Push(x interface{}) {
node := x.(internalNode)
pq.nodes = append(pq.nodes, node)
pq.indexList[node.ID()] = len(pq.nodes) - 1
}
func (pq *aStarPriorityQueue) Pop() interface{} {
x := pq.nodes[len(pq.nodes)-1]
pq.nodes = pq.nodes[:len(pq.nodes)-1]
delete(pq.indexList, x.ID())
return x
}
func (pq *aStarPriorityQueue) Fix(id int, newGScore, newFScore float64) {
if i, ok := pq.indexList[id]; ok {
pq.nodes[i].gscore = newGScore
pq.nodes[i].fscore = newFScore
heap.Fix(pq, i)
}
}
func (pq *aStarPriorityQueue) Find(id int) (internalNode, bool) {
loc, ok := pq.indexList[id]
if ok {
return pq.nodes[loc], true
} else {
return internalNode{}, false
}
}
func (pq *aStarPriorityQueue) Exists(id int) bool {
_, ok := pq.indexList[id]
return ok
}
type denseNodeSorter []graph.Node
func (dns denseNodeSorter) Less(i, j int) bool {
return dns[i].ID() < dns[j].ID()
}
func (dns denseNodeSorter) Swap(i, j int) {
dns[i], dns[j] = dns[j], dns[i]
}
func (dns denseNodeSorter) Len() int {
return len(dns)
}
// General utility funcs
// Rebuilds a path backwards from the goal.
func rebuildPath(predecessors map[int]graph.Node, goal graph.Node) []graph.Node {
if n, ok := goal.(internalNode); ok {
goal = n.Node
}
path := []graph.Node{goal}
curr := goal
for prev, ok := predecessors[curr.ID()]; ok; prev, ok = predecessors[curr.ID()] {
if n, ok := prev.(internalNode); ok {
prev = n.Node
}
path = append(path, prev)
curr = prev
}
// Reverse the path since it was built backwards
for i, j := 0, len(path)-1; i < j; i, j = i+1, j-1 {
path[i], path[j] = path[j], path[i]
}
return path
}