mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
275 lines
6.5 KiB
Go
275 lines
6.5 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package barneshut
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/spatial/r2"
|
|
)
|
|
|
|
// Particle2 is a particle in a plane.
|
|
type Particle2 interface {
|
|
Coord2() r2.Vec
|
|
Mass() float64
|
|
}
|
|
|
|
// Force2 is a force modeling function for interactions between p1 and p2,
|
|
// m1 is the mass of p1 and m2 of p2. The vector v is the vector from p1 to
|
|
// p2. The returned value is the force vector acting on p1.
|
|
//
|
|
// In models where the identity of particles must be known, p1 and p2 may be
|
|
// compared. Force2 may be passed nil for p2 when the Barnes-Hut approximation
|
|
// is being used. A nil p2 indicates that the second mass center is an
|
|
// aggregate.
|
|
type Force2 func(p1, p2 Particle2, m1, m2 float64, v r2.Vec) r2.Vec
|
|
|
|
// Gravity2 returns a vector force on m1 by m2, equal to (m1⋅m2)/‖v‖²
|
|
// in the directions of v. Gravity2 ignores the identity of the interacting
|
|
// particles and returns a zero vector when the two particles are
|
|
// coincident, but performs no other sanity checks.
|
|
func Gravity2(_, _ Particle2, m1, m2 float64, v r2.Vec) r2.Vec {
|
|
d2 := v.X*v.X + v.Y*v.Y
|
|
if d2 == 0 {
|
|
return r2.Vec{}
|
|
}
|
|
return v.Scale((m1 * m2) / (d2 * math.Sqrt(d2)))
|
|
}
|
|
|
|
// Plane implements Barnes-Hut force approximation calculations.
|
|
type Plane struct {
|
|
root tile
|
|
|
|
Particles []Particle2
|
|
}
|
|
|
|
// NewPlane returns a new Plane. If the plane is too large to allow
|
|
// particle coordinates to be distinguished due to floating point
|
|
// precision limits, NewPlane will return a non-nil error.
|
|
func NewPlane(p []Particle2) (*Plane, error) {
|
|
q := Plane{Particles: p}
|
|
err := q.Reset()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &q, nil
|
|
}
|
|
|
|
// Reset reconstructs the Barnes-Hut tree. Reset must be called if the
|
|
// Particles field or elements of Particles have been altered, unless
|
|
// ForceOn is called with theta=0 or no data structures have been
|
|
// previously built. If the plane is too large to allow particle
|
|
// coordinates to be distinguished due to floating point precision
|
|
// limits, Reset will return a non-nil error.
|
|
func (q *Plane) Reset() (err error) {
|
|
if len(q.Particles) == 0 {
|
|
q.root = tile{}
|
|
return nil
|
|
}
|
|
|
|
q.root = tile{
|
|
particle: q.Particles[0],
|
|
center: q.Particles[0].Coord2(),
|
|
mass: q.Particles[0].Mass(),
|
|
}
|
|
q.root.bounds.Min = q.root.center
|
|
q.root.bounds.Max = q.root.center
|
|
for _, e := range q.Particles[1:] {
|
|
c := e.Coord2()
|
|
if c.X < q.root.bounds.Min.X {
|
|
q.root.bounds.Min.X = c.X
|
|
}
|
|
if c.X > q.root.bounds.Max.X {
|
|
q.root.bounds.Max.X = c.X
|
|
}
|
|
if c.Y < q.root.bounds.Min.Y {
|
|
q.root.bounds.Min.Y = c.Y
|
|
}
|
|
if c.Y > q.root.bounds.Max.Y {
|
|
q.root.bounds.Max.Y = c.Y
|
|
}
|
|
}
|
|
|
|
defer func() {
|
|
switch r := recover(); r {
|
|
case nil:
|
|
case planeTooBig:
|
|
err = planeTooBig
|
|
default:
|
|
panic(r)
|
|
}
|
|
}()
|
|
|
|
// TODO(kortschak): Partially parallelise this by
|
|
// choosing the direction and using one of four
|
|
// goroutines to work on each root quadrant.
|
|
for _, e := range q.Particles[1:] {
|
|
q.root.insert(e)
|
|
}
|
|
q.root.summarize()
|
|
return nil
|
|
}
|
|
|
|
var planeTooBig = errors.New("barneshut: plane too big")
|
|
|
|
// ForceOn returns a force vector on p given p's mass and the force function, f,
|
|
// using the Barnes-Hut theta approximation parameter.
|
|
//
|
|
// Calls to f will include p in the p1 position and a non-nil p2 if the force
|
|
// interaction is with a non-aggregate mass center, otherwise p2 will be nil.
|
|
//
|
|
// It is safe to call ForceOn concurrently.
|
|
func (q *Plane) ForceOn(p Particle2, theta float64, f Force2) (force r2.Vec) {
|
|
var empty tile
|
|
if theta > 0 && q.root != empty {
|
|
return q.root.forceOn(p, p.Coord2(), p.Mass(), theta, f)
|
|
}
|
|
|
|
// For the degenerate case, just iterate over the
|
|
// slice of particles rather than walking the tree.
|
|
var v r2.Vec
|
|
m := p.Mass()
|
|
pv := p.Coord2()
|
|
for _, e := range q.Particles {
|
|
v = v.Add(f(p, e, m, e.Mass(), e.Coord2().Sub(pv)))
|
|
}
|
|
return v
|
|
}
|
|
|
|
// tile is a quad tree quadrant with Barnes-Hut extensions.
|
|
type tile struct {
|
|
particle Particle2
|
|
|
|
bounds r2.Box
|
|
|
|
nodes [4]*tile
|
|
|
|
center r2.Vec
|
|
mass float64
|
|
}
|
|
|
|
// insert inserts p into the subtree rooted at t.
|
|
func (t *tile) insert(p Particle2) {
|
|
if t.particle == nil {
|
|
for _, q := range t.nodes {
|
|
if q != nil {
|
|
t.passDown(p)
|
|
return
|
|
}
|
|
}
|
|
t.particle = p
|
|
t.center = p.Coord2()
|
|
t.mass = p.Mass()
|
|
return
|
|
}
|
|
t.passDown(p)
|
|
t.passDown(t.particle)
|
|
t.particle = nil
|
|
t.center = r2.Vec{}
|
|
t.mass = 0
|
|
}
|
|
|
|
func (t *tile) passDown(p Particle2) {
|
|
dir := quadrantOf(t.bounds, p)
|
|
if t.nodes[dir] == nil {
|
|
t.nodes[dir] = &tile{bounds: splitPlane(t.bounds, dir)}
|
|
}
|
|
t.nodes[dir].insert(p)
|
|
}
|
|
|
|
const (
|
|
ne = iota
|
|
se
|
|
sw
|
|
nw
|
|
)
|
|
|
|
// quadrantOf returns which quadrant of b that p should be placed in.
|
|
func quadrantOf(b r2.Box, p Particle2) int {
|
|
center := r2.Vec{
|
|
X: (b.Min.X + b.Max.X) / 2,
|
|
Y: (b.Min.Y + b.Max.Y) / 2,
|
|
}
|
|
c := p.Coord2()
|
|
if checkBounds && (c.X < b.Min.X || b.Max.X < c.X || c.Y < b.Min.Y || b.Max.Y < c.Y) {
|
|
panic(fmt.Sprintf("p out of range %+v: %#v", b, p))
|
|
}
|
|
if c.X < center.X {
|
|
if c.Y < center.Y {
|
|
return nw
|
|
} else {
|
|
return sw
|
|
}
|
|
} else {
|
|
if c.Y < center.Y {
|
|
return ne
|
|
} else {
|
|
return se
|
|
}
|
|
}
|
|
}
|
|
|
|
// splitPlane returns a quadrant subdivision of b in the given direction.
|
|
func splitPlane(b r2.Box, dir int) r2.Box {
|
|
old := b
|
|
halfX := (b.Max.X - b.Min.X) / 2
|
|
halfY := (b.Max.Y - b.Min.Y) / 2
|
|
switch dir {
|
|
case ne:
|
|
b.Min.X += halfX
|
|
b.Max.Y -= halfY
|
|
case se:
|
|
b.Min.X += halfX
|
|
b.Min.Y += halfY
|
|
case sw:
|
|
b.Max.X -= halfX
|
|
b.Min.Y += halfY
|
|
case nw:
|
|
b.Max.X -= halfX
|
|
b.Max.Y -= halfY
|
|
}
|
|
if b == old {
|
|
panic(planeTooBig)
|
|
}
|
|
return b
|
|
}
|
|
|
|
// summarize updates node masses and centers of mass.
|
|
func (t *tile) summarize() (center r2.Vec, mass float64) {
|
|
for _, d := range &t.nodes {
|
|
if d == nil {
|
|
continue
|
|
}
|
|
c, m := d.summarize()
|
|
t.center.X += c.X * m
|
|
t.center.Y += c.Y * m
|
|
t.mass += m
|
|
}
|
|
t.center.X /= t.mass
|
|
t.center.Y /= t.mass
|
|
return t.center, t.mass
|
|
}
|
|
|
|
// forceOn returns a force vector on p given p's mass m and the force
|
|
// calculation function, using the Barnes-Hut theta approximation parameter.
|
|
func (t *tile) forceOn(p Particle2, pt r2.Vec, m, theta float64, f Force2) (vector r2.Vec) {
|
|
s := ((t.bounds.Max.X - t.bounds.Min.X) + (t.bounds.Max.Y - t.bounds.Min.Y)) / 2
|
|
d := math.Hypot(pt.X-t.center.X, pt.Y-t.center.Y)
|
|
if s/d < theta || t.particle != nil {
|
|
return f(p, t.particle, m, t.mass, t.center.Sub(pt))
|
|
}
|
|
|
|
var v r2.Vec
|
|
for _, d := range &t.nodes {
|
|
if d == nil {
|
|
continue
|
|
}
|
|
v = v.Add(d.forceOn(p, pt, m, theta, f))
|
|
}
|
|
return v
|
|
}
|