mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 03:26:04 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
89 lines
2.3 KiB
Go
89 lines
2.3 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import "gonum.org/v1/gonum/blas"
|
||
|
||
// Dgebd2 reduces an m×n matrix A to upper or lower bidiagonal form by an orthogonal
|
||
// transformation.
|
||
//
|
||
// Qᵀ * A * P = B
|
||
//
|
||
// if m >= n, B is upper diagonal, otherwise B is lower bidiagonal.
|
||
// d is the diagonal, len = min(m,n)
|
||
// e is the off-diagonal len = min(m,n)-1
|
||
//
|
||
// Dgebd2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgebd2(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64) {
|
||
switch {
|
||
case m < 0:
|
||
panic(mLT0)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case lda < max(1, n):
|
||
panic(badLdA)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
minmn := min(m, n)
|
||
if minmn == 0 {
|
||
return
|
||
}
|
||
|
||
switch {
|
||
case len(d) < minmn:
|
||
panic(shortD)
|
||
case len(e) < minmn-1:
|
||
panic(shortE)
|
||
case len(tauQ) < minmn:
|
||
panic(shortTauQ)
|
||
case len(tauP) < minmn:
|
||
panic(shortTauP)
|
||
case len(work) < max(m, n):
|
||
panic(shortWork)
|
||
}
|
||
|
||
if m >= n {
|
||
for i := 0; i < n; i++ {
|
||
a[i*lda+i], tauQ[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min(i+1, m-1)*lda+i:], lda)
|
||
d[i] = a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
// Apply H_i to A[i:m, i+1:n] from the left.
|
||
if i < n-1 {
|
||
impl.Dlarf(blas.Left, m-i, n-i-1, a[i*lda+i:], lda, tauQ[i], a[i*lda+i+1:], lda, work)
|
||
}
|
||
a[i*lda+i] = d[i]
|
||
if i < n-1 {
|
||
a[i*lda+i+1], tauP[i] = impl.Dlarfg(n-i-1, a[i*lda+i+1], a[i*lda+min(i+2, n-1):], 1)
|
||
e[i] = a[i*lda+i+1]
|
||
a[i*lda+i+1] = 1
|
||
impl.Dlarf(blas.Right, m-i-1, n-i-1, a[i*lda+i+1:], 1, tauP[i], a[(i+1)*lda+i+1:], lda, work)
|
||
a[i*lda+i+1] = e[i]
|
||
} else {
|
||
tauP[i] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
a[i*lda+i], tauP[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1)
|
||
d[i] = a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
if i < m-1 {
|
||
impl.Dlarf(blas.Right, m-i-1, n-i, a[i*lda+i:], 1, tauP[i], a[(i+1)*lda+i:], lda, work)
|
||
}
|
||
a[i*lda+i] = d[i]
|
||
if i < m-1 {
|
||
a[(i+1)*lda+i], tauQ[i] = impl.Dlarfg(m-i-1, a[(i+1)*lda+i], a[min(i+2, m-1)*lda+i:], lda)
|
||
e[i] = a[(i+1)*lda+i]
|
||
a[(i+1)*lda+i] = 1
|
||
impl.Dlarf(blas.Left, m-i-1, n-i-1, a[(i+1)*lda+i:], lda, tauQ[i], a[(i+1)*lda+i+1:], lda, work)
|
||
a[(i+1)*lda+i] = e[i]
|
||
} else {
|
||
tauQ[i] = 0
|
||
}
|
||
}
|
||
}
|