Files
gonum/graph/internal/set/set.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

227 lines
4.6 KiB
Go

// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package set
import "gonum.org/v1/gonum/graph"
// Ints is a set of int identifiers.
type Ints map[int]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Ints) Add(e int) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Ints) Has(e int) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Ints) Remove(e int) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Ints) Count() int {
return len(s)
}
// IntsEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func IntsEqual(a, b Ints) bool {
if intsSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Int64s is a set of int64 identifiers.
type Int64s map[int64]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Int64s) Add(e int64) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Int64s) Has(e int64) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Int64s) Remove(e int64) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Int64s) Count() int {
return len(s)
}
// Int64sEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Int64sEqual(a, b Int64s) bool {
if int64sSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Nodes is a set of nodes keyed in their integer identifiers.
type Nodes map[int64]graph.Node
// NewNodes returns a new Nodes.
func NewNodes() Nodes {
return make(Nodes)
}
// NewNodes returns a new Nodes with the given size hint, n.
func NewNodesSize(n int) Nodes {
return make(Nodes, n)
}
// The simple accessor methods for Nodes are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Nodes) Add(n graph.Node) {
s[n.ID()] = n
}
// Remove deletes the specified element from the set.
func (s Nodes) Remove(e graph.Node) {
delete(s, e.ID())
}
// Count returns the number of element in the set.
func (s Nodes) Count() int {
return len(s)
}
// Has reports the existence of the elements in the set.
func (s Nodes) Has(n graph.Node) bool {
_, ok := s[n.ID()]
return ok
}
// CloneNodes returns a clone of src.
func CloneNodes(src Nodes) Nodes {
dst := make(Nodes, len(src))
for e, n := range src {
dst[e] = n
}
return dst
}
// Equal reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Equal(a, b Nodes) bool {
if same(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// UnionOfNodes returns the union of a and b.
//
// The union of two sets, a and b, is the set containing all the
// elements of each, for instance:
//
// {a,b,c} UNION {d,e,f} = {a,b,c,d,e,f}
//
// Since sets may not have repetition, unions of two sets that overlap
// do not contain repeat elements, that is:
//
// {a,b,c} UNION {b,c,d} = {a,b,c,d}
func UnionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
for e, n := range a {
dst[e] = n
}
for e, n := range b {
dst[e] = n
}
return dst
}
// IntersectionOfNodes returns the intersection of a and b.
//
// The intersection of two sets, a and b, is the set containing all
// the elements shared between the two sets, for instance:
//
// {a,b,c} INTERSECT {b,c,d} = {b,c}
//
// The intersection between a set and itself is itself, and thus
// effectively a copy operation:
//
// {a,b,c} INTERSECT {a,b,c} = {a,b,c}
//
// The intersection between two sets that share no elements is the empty
// set:
//
// {a,b,c} INTERSECT {d,e,f} = {}
func IntersectionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
if len(a) > len(b) {
a, b = b, a
}
for e, n := range a {
if _, ok := b[e]; ok {
dst[e] = n
}
}
return dst
}