mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 03:26:04 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
342 lines
10 KiB
Go
342 lines
10 KiB
Go
// Copyright ©2020 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package window
|
||
|
||
import "math"
|
||
|
||
// Rectangular modifies seq in place by the Rectangular window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Rectangular_window and
|
||
// https://www.recordingblogs.com/wiki/rectangular-window for details.
|
||
//
|
||
// The rectangular window has the lowest width of the main lobe and largest
|
||
// level of the side lobes. The result corresponds to a selection of
|
||
// limited length sequence of values without any modification.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 1,
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 2, ΔF_0.5 = 0.89, K = 1, ɣ_max = -13, β = 0.
|
||
func RectangularComplex(seq []complex128) []complex128 {
|
||
return seq
|
||
}
|
||
|
||
// SineComplex modifies seq in place by the Sine window and returns the
|
||
// result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Sine_window and
|
||
// https://www.recordingblogs.com/wiki/sine-window for details.
|
||
//
|
||
// Sine window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = sin(π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 3, ΔF_0.5 = 1.23, K = 1.5, ɣ_max = -23, β = -3.93.
|
||
func SineComplex(seq []complex128) []complex128 {
|
||
k := math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
w := math.Sin(k * float64(i))
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// LanczosComplex modifies seq in place by the Lanczos window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Lanczos_window and
|
||
// https://www.recordingblogs.com/wiki/lanczos-window for details.
|
||
//
|
||
// The Lanczos window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = sinc(2*k/(N-1) - 1),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 3.24, ΔF_0.5 = 1.3, K = 1.62, ɣ_max = -26.4, β = -4.6.
|
||
func LanczosComplex(seq []complex128) []complex128 {
|
||
k := 2 / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := math.Pi * (k*float64(i) - 1)
|
||
if x == 0 {
|
||
// Avoid NaN.
|
||
continue
|
||
}
|
||
w := math.Sin(x) / x
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// TriangularComplex modifies seq in place by the Triangular window and
|
||
// returns the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Triangular_window and
|
||
// https://www.recordingblogs.com/wiki/triangular-window for details.
|
||
//
|
||
// The Triangular window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 1 - |k/A -1|, A=(N-1)/2,
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.33, K = 2, ɣ_max = -26.5, β = -6.
|
||
func TriangularComplex(seq []complex128) []complex128 {
|
||
a := float64(len(seq)-1) / 2
|
||
for i, v := range seq {
|
||
w := 1 - math.Abs(float64(i)/a-1)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// HannComplex modifies seq in place by the Hann window and returns the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
||
// and https://www.recordingblogs.com/wiki/hann-window for details.
|
||
//
|
||
// The Hann window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.5*(1 - cos(2*π*k/(N-1))),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.5, K = 2, ɣ_max = -31.5, β = -6.
|
||
func HannComplex(seq []complex128) []complex128 {
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
w := 0.5 * (1 - math.Cos(k*float64(i)))
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// BartlettHannComplex modifies seq in place by the Bartlett-Hann window
|
||
// and returns result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Bartlett%E2%80%93Hann_window
|
||
// and https://www.recordingblogs.com/wiki/bartlett-hann-window for details.
|
||
//
|
||
// The Bartlett-Hann window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.62 - 0.48*|k/(N-1)-0.5| - 0.38*cos(2*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.45, K = 2, ɣ_max = -35.9, β = -6.
|
||
func BartlettHannComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.62
|
||
a1 = 0.48
|
||
a2 = 0.38
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
w := a0 - a1*math.Abs(float64(i)/float64(len(seq)-1)-0.5) - a2*math.Cos(k*float64(i))
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// HammingComplex modifies seq in place by the Hamming window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
||
// and https://www.recordingblogs.com/wiki/hamming-window for details.
|
||
//
|
||
// The Hamming window is a high-resolution window. Among K=2 windows it has
|
||
// the highest ɣ_max.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 25/46 - 21/46 * cos(2*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 4, ΔF_0.5 = 1.33, K = 2, ɣ_max = -42, β = -5.37.
|
||
func HammingComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.54
|
||
a1 = 0.46
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
w := a0 - a1*math.Cos(k*float64(i))
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// BlackmanComplex modifies seq in place by the Blackman window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Blackman_window and
|
||
// https://www.recordingblogs.com/wiki/blackman-window for details.
|
||
//
|
||
// The Blackman window is a high-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.42 - 0.5*cos(2*π*k/(N-1)) + 0.08*cos(4*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 6, ΔF_0.5 = 1.7, K = 3, ɣ_max = -58, β = -7.54.
|
||
func BlackmanComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.42
|
||
a1 = 0.5
|
||
a2 = 0.08
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := k * float64(i)
|
||
w := a0 - a1*math.Cos(x) + a2*math.Cos(2*x)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// BlackmanHarrisComplex modifies seq in place by the Blackman-Harris window
|
||
// and returns the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Harris_window
|
||
// and https://www.recordingblogs.com/wiki/blackman-harris-window for details.
|
||
//
|
||
// The Blackman-Harris window is a low-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.35875 - 0.48829*cos(2*π*k/(N-1)) +
|
||
// 0.14128*cos(4*π*k/(N-1)) - 0.01168*cos(6*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.97, K = 4, ɣ_max = -92, β = -8.91.
|
||
func BlackmanHarrisComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.35875
|
||
a1 = 0.48829
|
||
a2 = 0.14128
|
||
a3 = 0.01168
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := k * float64(i)
|
||
w := a0 - a1*math.Cos(x) + a2*math.Cos(2*x) - a3*math.Cos(3*x)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// NuttallComplex modifies seq in place by the Nuttall window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Nuttall_window,_continuous_first_derivative
|
||
// and https://www.recordingblogs.com/wiki/nuttall-window for details.
|
||
//
|
||
// The Nuttall window is a low-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.355768 - 0.487396*cos(2*π*k/(N-1)) + 0.144232*cos(4*π*k/(N-1)) -
|
||
// 0.012604*cos(6*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.98, K = 4, ɣ_max = -93, β = -9.
|
||
func NuttallComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.355768
|
||
a1 = 0.487396
|
||
a2 = 0.144232
|
||
a3 = 0.012604
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := k * float64(i)
|
||
w := a0 - a1*math.Cos(x) + a2*math.Cos(2*x) - a3*math.Cos(3*x)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// BlackmanNuttallComplex modifies seq in place by the Blackman-Nuttall
|
||
// window and returns the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Nuttall_window
|
||
// and https://www.recordingblogs.com/wiki/blackman-nuttall-window for details.
|
||
//
|
||
// The Blackman-Nuttall window is a low-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.3635819 - 0.4891775*cos(2*π*k/(N-1)) + 0.1365995*cos(4*π*k/(N-1)) -
|
||
// 0.0106411*cos(6*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 8, ΔF_0.5 = 1.94, K = 4, ɣ_max = -98, β = -8.8.
|
||
func BlackmanNuttallComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.3635819
|
||
a1 = 0.4891775
|
||
a2 = 0.1365995
|
||
a3 = 0.0106411
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := k * float64(i)
|
||
w := a0 - a1*math.Cos(x) + a2*math.Cos(2*x) - a3*math.Cos(3*x)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|
||
|
||
// FlatTopComplex modifies seq in place by the Flat Top window and returns
|
||
// the result.
|
||
// See https://en.wikipedia.org/wiki/Window_function#Flat_top_window and
|
||
// https://www.recordingblogs.com/wiki/flat-top-window for details.
|
||
//
|
||
// The Flat Top window is a low-resolution window.
|
||
//
|
||
// The sequence weights are
|
||
//
|
||
// w[k] = 0.21557895 - 0.41663158*cos(2*π*k/(N-1)) +
|
||
// 0.277263158*cos(4*π*k/(N-1)) - 0.083578947*cos(6*π*k/(N-1)) +
|
||
// 0.006947368*cos(4*π*k/(N-1)),
|
||
//
|
||
// for k=0,1,...,N-1 where N is the length of the window.
|
||
//
|
||
// Spectral leakage parameters: ΔF_0 = 10, ΔF_0.5 = 3.72, K = 5, ɣ_max = -93.0, β = -13.34.
|
||
func FlatTopComplex(seq []complex128) []complex128 {
|
||
const (
|
||
a0 = 0.21557895
|
||
a1 = 0.41663158
|
||
a2 = 0.277263158
|
||
a3 = 0.083578947
|
||
a4 = 0.006947368
|
||
)
|
||
|
||
k := 2 * math.Pi / float64(len(seq)-1)
|
||
for i, v := range seq {
|
||
x := k * float64(i)
|
||
w := a0 - a1*math.Cos(x) + a2*math.Cos(2*x) - a3*math.Cos(3*x) + a4*math.Cos(4*x)
|
||
seq[i] = complex(w*real(v), w*imag(v))
|
||
}
|
||
return seq
|
||
}
|