mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 03:26:04 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
161 lines
4.0 KiB
Go
161 lines
4.0 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package fd
|
|
|
|
import "sync"
|
|
|
|
// Laplacian computes the Laplacian of the multivariate function f at the location
|
|
// x. That is, Laplacian returns
|
|
//
|
|
// ∆ f(x) = ∇ · ∇ f(x) = \sum_i ∂^2 f(x)/∂x_i^2
|
|
//
|
|
// The finite difference formula and other options are specified by settings.
|
|
// The order of the difference formula must be 2 or Laplacian will panic.
|
|
func Laplacian(f func(x []float64) float64, x []float64, settings *Settings) float64 {
|
|
n := len(x)
|
|
if n == 0 {
|
|
panic("laplacian: x has zero length")
|
|
}
|
|
|
|
// Default settings.
|
|
formula := Central2nd
|
|
step := formula.Step
|
|
var originValue float64
|
|
var originKnown, concurrent bool
|
|
|
|
// Use user settings if provided.
|
|
if settings != nil {
|
|
if !settings.Formula.isZero() {
|
|
formula = settings.Formula
|
|
step = formula.Step
|
|
checkFormula(formula)
|
|
if formula.Derivative != 2 {
|
|
panic(badDerivOrder)
|
|
}
|
|
}
|
|
if settings.Step != 0 {
|
|
if settings.Step < 0 {
|
|
panic(negativeStep)
|
|
}
|
|
step = settings.Step
|
|
}
|
|
originKnown = settings.OriginKnown
|
|
originValue = settings.OriginValue
|
|
concurrent = settings.Concurrent
|
|
}
|
|
|
|
evals := n * len(formula.Stencil)
|
|
if usesOrigin(formula.Stencil) {
|
|
evals -= n
|
|
}
|
|
|
|
nWorkers := computeWorkers(concurrent, evals)
|
|
if nWorkers == 1 {
|
|
return laplacianSerial(f, x, formula.Stencil, step, originKnown, originValue)
|
|
}
|
|
return laplacianConcurrent(nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
|
|
}
|
|
|
|
func laplacianSerial(f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
|
|
n := len(x)
|
|
xCopy := make([]float64, n)
|
|
fo := func() float64 {
|
|
// Copy x in case it is modified during the call.
|
|
copy(xCopy, x)
|
|
return f(x)
|
|
}
|
|
is2 := 1 / (step * step)
|
|
origin := getOrigin(originKnown, originValue, fo, stencil)
|
|
var laplacian float64
|
|
for i := 0; i < n; i++ {
|
|
for _, pt := range stencil {
|
|
var v float64
|
|
if pt.Loc == 0 {
|
|
v = origin
|
|
} else {
|
|
// Copying the data anew has two benefits. First, it
|
|
// avoids floating point issues where adding and then
|
|
// subtracting the step don't return to the exact same
|
|
// location. Secondly, it protects against the function
|
|
// modifying the input data.
|
|
copy(xCopy, x)
|
|
xCopy[i] += pt.Loc * step
|
|
v = f(xCopy)
|
|
}
|
|
laplacian += v * pt.Coeff * is2
|
|
}
|
|
}
|
|
return laplacian
|
|
}
|
|
|
|
func laplacianConcurrent(nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) float64 {
|
|
type run struct {
|
|
i int
|
|
idx int
|
|
result float64
|
|
}
|
|
n := len(x)
|
|
send := make(chan run, evals)
|
|
ans := make(chan run, evals)
|
|
|
|
var originWG sync.WaitGroup
|
|
hasOrigin := usesOrigin(stencil)
|
|
if hasOrigin {
|
|
originWG.Add(1)
|
|
// Launch worker to compute the origin.
|
|
go func() {
|
|
defer originWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
copy(xCopy, x)
|
|
originValue = f(xCopy)
|
|
}()
|
|
}
|
|
|
|
var workerWG sync.WaitGroup
|
|
// Launch workers.
|
|
for i := 0; i < nWorkers; i++ {
|
|
workerWG.Add(1)
|
|
go func(send <-chan run, ans chan<- run) {
|
|
defer workerWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
for r := range send {
|
|
if stencil[r.idx].Loc == 0 {
|
|
originWG.Wait()
|
|
r.result = originValue
|
|
} else {
|
|
// See laplacianSerial for comment on the copy.
|
|
copy(xCopy, x)
|
|
xCopy[r.i] += stencil[r.idx].Loc * step
|
|
r.result = f(xCopy)
|
|
}
|
|
ans <- r
|
|
}
|
|
}(send, ans)
|
|
}
|
|
|
|
// Launch the distributor, which sends all of runs.
|
|
go func(send chan<- run) {
|
|
for i := 0; i < n; i++ {
|
|
for idx := range stencil {
|
|
send <- run{
|
|
i: i, idx: idx,
|
|
}
|
|
}
|
|
}
|
|
close(send)
|
|
// Wait for all the workers to quit, then close the ans channel.
|
|
workerWG.Wait()
|
|
close(ans)
|
|
}(send)
|
|
|
|
// Read in the results.
|
|
is2 := 1 / (step * step)
|
|
var laplacian float64
|
|
for r := range ans {
|
|
laplacian += r.result * stencil[r.idx].Coeff * is2
|
|
}
|
|
return laplacian
|
|
}
|