mirror of
https://github.com/gonum/gonum.git
synced 2025-10-28 01:21:44 +08:00
* Implemented Carlson's and Legendre's elliptic integrals. Added Carlson's symmetric elliptic integrals RF and RD. Added Legendre's elliptic integrals of the 1st and 2nd kinds. * Combined const declarations. Combined const decls. Used 1 as a seed for the RNG. * Renamed CarsonRF, CarlsonRD to EllipticRF, EllipticRD. Renamed CarsonRF, CarlsonRD to EllipticRF, EllipticRD. Updated the docs as per the reviewer's suggestions. Used bit shifts to define 2^-1022. * Improved the docs. Improved the docs. Added an ArXiv preprint link. * Improved doc formatting. Used two spaces instead of tabs. Removed extra blank lines. * Improved the docs. Elaborated on the origins of the RF and RD integrals. * Multiple fixes as suggested by the reviewer. Multiple fixes in the docs and code. Added spot checks for several precomputed values of EllipticF and EllipticE.
157 lines
5.8 KiB
Go
157 lines
5.8 KiB
Go
// Copyright ©2017 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package mathext
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
// EllipticRF computes the symmetric elliptic integral R_F(x,y,z):
|
|
// R_F(x,y,z) = (1/2)\int_{0}^{\infty}{1/s(t)} dt,
|
|
// s(t) = \sqrt{(t+x)(t+y)(t+z)}.
|
|
//
|
|
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
|
|
// 0 ≤ x,y,z ≤ upper,
|
|
// lower ≤ x+y,y+z,z+x,
|
|
// where:
|
|
// lower = 5/(2^1022) = 1.112536929253601e-307,
|
|
// upper = (2^1022)/5 = 8.988465674311580e+306.
|
|
//
|
|
// The definition of the symmetric elliptic integral R_F can be found in NIST
|
|
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E1).
|
|
func EllipticRF(x, y, z float64) float64 {
|
|
// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
|
|
// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
|
|
// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
|
|
const (
|
|
lower = 5.0 / (1 << 256) / (1 << 256) / (1 << 256) / (1 << 254) // 5*2^-1022
|
|
upper = 1 / lower
|
|
tol = 1.2674918778210762260320167734407048051023273568443e-02 // (3ε)^(1/8)
|
|
)
|
|
if x < 0 || y < 0 || z < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
|
|
return math.NaN()
|
|
}
|
|
if upper < x || upper < y || upper < z {
|
|
return math.NaN()
|
|
}
|
|
if x+y < lower || y+z < lower || z+x < lower {
|
|
return math.NaN()
|
|
}
|
|
|
|
A0 := (x + y + z) / 3
|
|
An := A0
|
|
Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
|
|
xn, yn, zn := x, y, z
|
|
mul := 1.0
|
|
|
|
for Q >= mul*math.Abs(An) {
|
|
xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
|
|
lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
|
|
An = (An + lambda) * 0.25
|
|
xn = (xn + lambda) * 0.25
|
|
yn = (yn + lambda) * 0.25
|
|
zn = (zn + lambda) * 0.25
|
|
mul *= 4
|
|
}
|
|
|
|
X := (A0 - x) / (mul * An)
|
|
Y := (A0 - y) / (mul * An)
|
|
Z := -(X + Y)
|
|
E2 := X*Y - Z*Z
|
|
E3 := X * Y * Z
|
|
|
|
// http://dlmf.nist.gov/19.36.E1
|
|
return (1 - 1/10.0*E2 + 1/14.0*E3 + 1/24.0*E2*E2 - 3/44.0*E2*E3 - 5/208.0*E2*E2*E2 + 3/104.0*E3*E3 + 1/16.0*E2*E2*E3) / math.Sqrt(An)
|
|
}
|
|
|
|
// EllipticRD computes the symmetric elliptic integral R_D(x,y,z):
|
|
// R_D(x,y,z) = (1/2)\int_{0}^{\infty}{1/(s(t)(t+z))} dt,
|
|
// s(t) = \sqrt{(t+x)(t+y)(t+z)}.
|
|
//
|
|
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
|
|
// 0 ≤ x,y ≤ upper,
|
|
// lower ≤ z ≤ upper,
|
|
// lower ≤ x+y,
|
|
// where:
|
|
// lower = (5/(2^1022))^(1/3) = 4.809554074311679e-103,
|
|
// upper = ((2^1022)/5)^(1/3) = 2.079194837087086e+102.
|
|
//
|
|
// The definition of the symmetric elliptic integral R_D can be found in NIST
|
|
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E5).
|
|
func EllipticRD(x, y, z float64) float64 {
|
|
// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
|
|
// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
|
|
// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
|
|
const (
|
|
lower = 4.8095540743116787026618007863123676393525016818363e-103 // (5*2^-1022)^(1/3)
|
|
upper = 1 / lower
|
|
tol = 9.0351169339315770474760122547068324993857488849382e-03 // (ε/5)^(1/8)
|
|
)
|
|
if x < 0 || y < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
|
|
return math.NaN()
|
|
}
|
|
if upper < x || upper < y || upper < z {
|
|
return math.NaN()
|
|
}
|
|
if x+y < lower || z < lower {
|
|
return math.NaN()
|
|
}
|
|
|
|
A0 := (x + y + 3*z) / 5
|
|
An := A0
|
|
Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
|
|
xn, yn, zn := x, y, z
|
|
mul, s := 1.0, 0.0
|
|
|
|
for Q >= mul*math.Abs(An) {
|
|
xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
|
|
lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
|
|
s += 1 / (mul * znsqrt * (zn + lambda))
|
|
An = (An + lambda) * 0.25
|
|
xn = (xn + lambda) * 0.25
|
|
yn = (yn + lambda) * 0.25
|
|
zn = (zn + lambda) * 0.25
|
|
mul *= 4
|
|
}
|
|
|
|
X := (A0 - x) / (mul * An)
|
|
Y := (A0 - y) / (mul * An)
|
|
Z := -(X + Y) / 3
|
|
E2 := X*Y - 6*Z*Z
|
|
E3 := (3*X*Y - 8*Z*Z) * Z
|
|
E4 := 3 * (X*Y - Z*Z) * Z * Z
|
|
E5 := X * Y * Z * Z * Z
|
|
|
|
// http://dlmf.nist.gov/19.36.E2
|
|
return (1-3/14.0*E2+1/6.0*E3+9/88.0*E2*E2-3/22.0*E4-9/52.0*E2*E3+3/26.0*E5-1/16.0*E2*E2*E2+3/40.0*E3*E3+3/20.0*E2*E4+45/272.0*E2*E2*E3-9/68.0*(E3*E4+E2*E5))/(mul*An*math.Sqrt(An)) + 3*s
|
|
}
|
|
|
|
// EllipticF computes the Legendre's elliptic integral of the 1st kind F(phi,m), 0≤m<1:
|
|
// F(\phi,m) = \int_{0}^{\phi} 1 / \sqrt{1-m\sin^2(\theta)} d\theta
|
|
//
|
|
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
|
|
// F(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)
|
|
//
|
|
// The definition of F(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
|
|
// Functions (http://dlmf.nist.gov/19.2.E4).
|
|
func EllipticF(phi, m float64) float64 {
|
|
s, c := math.Sincos(phi)
|
|
return s * EllipticRF(c*c, 1-m*s*s, 1)
|
|
}
|
|
|
|
// EllipticE computes the Legendre's elliptic integral of the 2nd kind E(phi,m), 0≤m<1:
|
|
// E(\phi,m) = \int_{0}^{\phi} \sqrt{1-m\sin^2(\theta)} d\theta
|
|
//
|
|
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
|
|
// E(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)-(m/3)\sin^3\phi R_D(\cos^2\phi,1-m\sin^2\phi,1)
|
|
//
|
|
// The definition of E(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
|
|
// Functions (http://dlmf.nist.gov/19.2.E5).
|
|
func EllipticE(phi, m float64) float64 {
|
|
s, c := math.Sincos(phi)
|
|
x, y := c*c, 1-m*s*s
|
|
return s * (EllipticRF(x, y, 1) - (m/3)*s*s*EllipticRD(x, y, 1))
|
|
}
|