mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
194 lines
5.1 KiB
Go
194 lines
5.1 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package fd
|
|
|
|
import (
|
|
"math"
|
|
"sync"
|
|
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
// Hessian approximates the Hessian matrix of the multivariate function f
|
|
// at the location x. That is
|
|
// H_{i,j} = ∂^2 f(x)/∂x_i ∂x_j
|
|
// If dst is not nil, the resulting H will be stored in-place into dst
|
|
// and returned, otherwise a new matrix will be allocated first. Finite difference
|
|
// formula and other options are specified by settings. If settings is nil,
|
|
// the Hessian will be estimated using the Forward formula and a default step size.
|
|
//
|
|
// Hessian panics if the size of dst and x is not equal, or if the derivative
|
|
// order of the formula is not 1.
|
|
func Hessian(dst *mat.SymDense, f func(x []float64) float64, x []float64, settings *Settings) *mat.SymDense {
|
|
n := len(x)
|
|
if dst == nil {
|
|
dst = mat.NewSymDense(n, nil)
|
|
} else {
|
|
if n2 := dst.Symmetric(); n2 != n {
|
|
panic("hessian: dst size mismatch")
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
for j := i; j < n; j++ {
|
|
dst.SetSym(i, j, 0)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Default settings.
|
|
formula := Forward
|
|
step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
|
|
var originValue float64
|
|
var originKnown, concurrent bool
|
|
|
|
// Use user settings if provided.
|
|
if settings != nil {
|
|
if !settings.Formula.isZero() {
|
|
formula = settings.Formula
|
|
step = math.Sqrt(formula.Step)
|
|
checkFormula(formula)
|
|
if formula.Derivative != 1 {
|
|
panic(badDerivOrder)
|
|
}
|
|
}
|
|
if settings.Step != 0 {
|
|
if settings.Step < 0 {
|
|
panic(negativeStep)
|
|
}
|
|
step = settings.Step
|
|
}
|
|
originKnown = settings.OriginKnown
|
|
originValue = settings.OriginValue
|
|
concurrent = settings.Concurrent
|
|
}
|
|
|
|
evals := n * (n + 1) / 2 * len(formula.Stencil) * len(formula.Stencil)
|
|
for _, pt := range formula.Stencil {
|
|
if pt.Loc == 0 {
|
|
evals -= n * (n + 1) / 2
|
|
break
|
|
}
|
|
}
|
|
|
|
nWorkers := computeWorkers(concurrent, evals)
|
|
if nWorkers == 1 {
|
|
hessianSerial(dst, f, x, formula.Stencil, step, originKnown, originValue)
|
|
return dst
|
|
}
|
|
hessianConcurrent(dst, nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
|
|
return dst
|
|
}
|
|
|
|
func hessianSerial(dst *mat.SymDense, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
|
|
n := len(x)
|
|
xCopy := make([]float64, n)
|
|
fo := func() float64 {
|
|
// Copy x in case it is modified during the call.
|
|
copy(xCopy, x)
|
|
return f(x)
|
|
}
|
|
is2 := 1 / (step * step)
|
|
origin := getOrigin(originKnown, originValue, fo, stencil)
|
|
for i := 0; i < n; i++ {
|
|
for j := i; j < n; j++ {
|
|
var hess float64
|
|
for _, pti := range stencil {
|
|
for _, ptj := range stencil {
|
|
var v float64
|
|
if pti.Loc == 0 && ptj.Loc == 0 {
|
|
v = origin
|
|
} else {
|
|
// Copying the data anew has two benefits. First, it
|
|
// avoids floating point issues where adding and then
|
|
// subtracting the step don't return to the exact same
|
|
// location. Secondly, it protects against the function
|
|
// modifying the input data.
|
|
copy(xCopy, x)
|
|
xCopy[i] += pti.Loc * step
|
|
xCopy[j] += ptj.Loc * step
|
|
v = f(xCopy)
|
|
}
|
|
hess += v * pti.Coeff * ptj.Coeff * is2
|
|
}
|
|
}
|
|
dst.SetSym(i, j, hess)
|
|
}
|
|
}
|
|
}
|
|
|
|
func hessianConcurrent(dst *mat.SymDense, nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
|
|
n := dst.Symmetric()
|
|
type run struct {
|
|
i, j int
|
|
iIdx, jIdx int
|
|
result float64
|
|
}
|
|
|
|
send := make(chan run, evals)
|
|
ans := make(chan run, evals)
|
|
|
|
var originWG sync.WaitGroup
|
|
hasOrigin := usesOrigin(stencil)
|
|
if hasOrigin {
|
|
originWG.Add(1)
|
|
// Launch worker to compute the origin.
|
|
go func() {
|
|
defer originWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
copy(xCopy, x)
|
|
originValue = f(xCopy)
|
|
}()
|
|
}
|
|
|
|
var workerWG sync.WaitGroup
|
|
// Launch workers.
|
|
for i := 0; i < nWorkers; i++ {
|
|
workerWG.Add(1)
|
|
go func(send <-chan run, ans chan<- run) {
|
|
defer workerWG.Done()
|
|
xCopy := make([]float64, len(x))
|
|
for r := range send {
|
|
if stencil[r.iIdx].Loc == 0 && stencil[r.jIdx].Loc == 0 {
|
|
originWG.Wait()
|
|
r.result = originValue
|
|
} else {
|
|
// See hessianSerial for comment on the copy.
|
|
copy(xCopy, x)
|
|
xCopy[r.i] += stencil[r.iIdx].Loc * step
|
|
xCopy[r.j] += stencil[r.jIdx].Loc * step
|
|
r.result = f(xCopy)
|
|
}
|
|
ans <- r
|
|
}
|
|
}(send, ans)
|
|
}
|
|
|
|
// Launch the distributor, which sends all of runs.
|
|
go func(send chan<- run) {
|
|
for i := 0; i < n; i++ {
|
|
for j := i; j < n; j++ {
|
|
for iIdx := range stencil {
|
|
for jIdx := range stencil {
|
|
send <- run{
|
|
i: i, j: j, iIdx: iIdx, jIdx: jIdx,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
close(send)
|
|
// Wait for all the workers to quit, then close the ans channel.
|
|
workerWG.Wait()
|
|
close(ans)
|
|
}(send)
|
|
|
|
is2 := 1 / (step * step)
|
|
// Read in the results.
|
|
for r := range ans {
|
|
v := r.result * stencil[r.iIdx].Coeff * stencil[r.jIdx].Coeff * is2
|
|
v += dst.At(r.i, r.j)
|
|
dst.SetSym(r.i, r.j, v)
|
|
}
|
|
}
|