Files
gonum/internal/cephes/igami.go
2017-02-22 10:07:09 -05:00

203 lines
3.2 KiB
Go

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
* Cephes Math Library Release 2.0: April, 1987
* Copyright 1985, 1987 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
package cephes
import (
"math"
)
/*
* Adapted from scipy's cephes igami.c
*/
/*
*
* Inverse of complemented incomplete Gamma integral
*
*
*
* SYNOPSIS:
*
* a, x, p float64
*
* x = IgamI(a, p)
*
* DESCRIPTION:
*
* Given p, the function finds x such that
*
* IgamC(a, x) = p
*
* Starting with the approximate value
*
* 3
* x = a t
*
* where
*
* t = 1 - d - ndtri(p) sqrt(d)
*
* and
*
* d = 1/9a,
*
* the routine performs up to 10 Newton iterations to find the
* root of IgamC(a, x) - p = 0.
*
* ACCURACY:
*
* Tested at random a, p in the intervals indicated.
*
* a p Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
* IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
* IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
*/
/*
* Cephes Math Library Release 2.3: March, 1995
* Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/
// IgamI calculates the inverse of complemented incomplete Gamma integral
func IgamI(a, y0 float64) float64 {
// bound the solution
x0 := math.MaxFloat64
yl := 0.0
x1 := 0.0
yh := 1.0
dithresh := 5.0 * machEp
if y0 < 0 || y0 > 1 || a <= 0 {
panic(badParamOutOfBounds)
}
if y0 == 0 {
return math.MaxFloat64
}
if y0 == 1 {
return 0.0
}
// approximation to inverse function
d := 1.0 / (9.0 * a)
y := 1.0 - d - Ndtri(y0)*math.Sqrt(d)
x := a * y * y * y
lgm := lgam(a)
for i := 0; i < 10; i++ {
if x > x0 || x < x1 {
break
}
y = IgamC(a, x)
if y < yl || y > yh {
break
}
if y < y0 {
x0 = x
yl = y
} else {
x1 = x
yh = y
}
// compute the derivative of the function at this point
d = (a-1)*math.Log(x) - x - lgm
if d < -maxLog {
break
}
d = -math.Exp(d)
// compute the step to the next approximation of x
d = (y - y0) / d
if math.Abs(d/x) < machEp {
return x
}
x = x - d
}
d = 0.0625
if x0 == math.MaxFloat64 {
if x <= 0 {
x = 1
}
for x0 == math.MaxFloat64 {
x = (1 + d) * x
y = IgamC(a, x)
if y < y0 {
x0 = x
yl = y
break
}
d = d + d
}
}
d = 0.5
dir := 0
for i := 0; i < 400; i++ {
x = x1 + d*(x0-x1)
y = IgamC(a, x)
lgm = (x0 - x1) / (x1 + x0)
if math.Abs(lgm) < dithresh {
break
}
lgm = (y - y0) / y0
if math.Abs(lgm) < dithresh {
break
}
if x <= 0 {
break
}
if y >= y0 {
x1 = x
yh = y
if dir < 0 {
dir = 0
d = 0.5
} else if dir > 1 {
d = 0.5*d + 0.5
} else {
d = (y0 - yl) / (yh - yl)
}
dir++
} else {
x0 = x
yl = y
if dir > 0 {
dir = 0
d = 0.5
} else if dir < -1 {
d = 0.5 * d
} else {
d = (y0 - yl) / (yh - yl)
}
dir--
}
}
if x == 0 {
panic(badParamUnderflow)
}
return x
}