mirror of
https://github.com/gonum/gonum.git
synced 2025-10-15 11:40:45 +08:00
203 lines
3.2 KiB
Go
203 lines
3.2 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
/*
|
|
* Cephes Math Library Release 2.0: April, 1987
|
|
* Copyright 1985, 1987 by Stephen L. Moshier
|
|
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
|
*/
|
|
|
|
package cephes
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
/*
|
|
* Adapted from scipy's cephes igami.c
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* Inverse of complemented incomplete Gamma integral
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* a, x, p float64
|
|
*
|
|
* x = IgamI(a, p)
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Given p, the function finds x such that
|
|
*
|
|
* IgamC(a, x) = p
|
|
*
|
|
* Starting with the approximate value
|
|
*
|
|
* 3
|
|
* x = a t
|
|
*
|
|
* where
|
|
*
|
|
* t = 1 - d - ndtri(p) sqrt(d)
|
|
*
|
|
* and
|
|
*
|
|
* d = 1/9a,
|
|
*
|
|
* the routine performs up to 10 Newton iterations to find the
|
|
* root of IgamC(a, x) - p = 0.
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Tested at random a, p in the intervals indicated.
|
|
*
|
|
* a p Relative error:
|
|
* arithmetic domain domain # trials peak rms
|
|
* IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
|
|
* IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
|
|
* IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
|
|
*/
|
|
|
|
/*
|
|
* Cephes Math Library Release 2.3: March, 1995
|
|
* Copyright 1984, 1987, 1995 by Stephen L. Moshier
|
|
*/
|
|
|
|
// IgamI calculates the inverse of complemented incomplete Gamma integral
|
|
func IgamI(a, y0 float64) float64 {
|
|
// bound the solution
|
|
x0 := math.MaxFloat64
|
|
yl := 0.0
|
|
x1 := 0.0
|
|
yh := 1.0
|
|
dithresh := 5.0 * machEp
|
|
|
|
if y0 < 0 || y0 > 1 || a <= 0 {
|
|
panic(badParamOutOfBounds)
|
|
}
|
|
|
|
if y0 == 0 {
|
|
return math.MaxFloat64
|
|
}
|
|
|
|
if y0 == 1 {
|
|
return 0.0
|
|
}
|
|
|
|
// approximation to inverse function
|
|
d := 1.0 / (9.0 * a)
|
|
y := 1.0 - d - Ndtri(y0)*math.Sqrt(d)
|
|
x := a * y * y * y
|
|
|
|
lgm := lgam(a)
|
|
|
|
for i := 0; i < 10; i++ {
|
|
if x > x0 || x < x1 {
|
|
break
|
|
}
|
|
|
|
y = IgamC(a, x)
|
|
|
|
if y < yl || y > yh {
|
|
break
|
|
}
|
|
|
|
if y < y0 {
|
|
x0 = x
|
|
yl = y
|
|
} else {
|
|
x1 = x
|
|
yh = y
|
|
}
|
|
|
|
// compute the derivative of the function at this point
|
|
d = (a-1)*math.Log(x) - x - lgm
|
|
if d < -maxLog {
|
|
break
|
|
}
|
|
d = -math.Exp(d)
|
|
|
|
// compute the step to the next approximation of x
|
|
d = (y - y0) / d
|
|
if math.Abs(d/x) < machEp {
|
|
return x
|
|
}
|
|
x = x - d
|
|
}
|
|
|
|
d = 0.0625
|
|
if x0 == math.MaxFloat64 {
|
|
if x <= 0 {
|
|
x = 1
|
|
}
|
|
for x0 == math.MaxFloat64 {
|
|
x = (1 + d) * x
|
|
y = IgamC(a, x)
|
|
if y < y0 {
|
|
x0 = x
|
|
yl = y
|
|
break
|
|
}
|
|
d = d + d
|
|
}
|
|
}
|
|
|
|
d = 0.5
|
|
dir := 0
|
|
for i := 0; i < 400; i++ {
|
|
x = x1 + d*(x0-x1)
|
|
y = IgamC(a, x)
|
|
|
|
lgm = (x0 - x1) / (x1 + x0)
|
|
if math.Abs(lgm) < dithresh {
|
|
break
|
|
}
|
|
|
|
lgm = (y - y0) / y0
|
|
if math.Abs(lgm) < dithresh {
|
|
break
|
|
}
|
|
|
|
if x <= 0 {
|
|
break
|
|
}
|
|
|
|
if y >= y0 {
|
|
x1 = x
|
|
yh = y
|
|
if dir < 0 {
|
|
dir = 0
|
|
d = 0.5
|
|
} else if dir > 1 {
|
|
d = 0.5*d + 0.5
|
|
} else {
|
|
d = (y0 - yl) / (yh - yl)
|
|
}
|
|
dir++
|
|
} else {
|
|
x0 = x
|
|
yl = y
|
|
if dir > 0 {
|
|
dir = 0
|
|
d = 0.5
|
|
} else if dir < -1 {
|
|
d = 0.5 * d
|
|
} else {
|
|
d = (y0 - yl) / (yh - yl)
|
|
}
|
|
dir--
|
|
}
|
|
}
|
|
|
|
if x == 0 {
|
|
panic(badParamUnderflow)
|
|
}
|
|
|
|
return x
|
|
}
|