Files
gonum/native/dgebrd.go
kortschak 4813c5ed41 native: mark internal routines
These (generally) cannot be made unexported because we test via
testlapack.

Also fix a name and some capitalisation.
2016-03-21 06:27:36 +10:30

143 lines
4.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
// an orthogonal transformation:
// Q^T * A * P = B.
// The diagonal elements of B are stored in d and the off diagonal elements stored
// in e. These are additionally stored along the diagonal of A and the off-diagonal
// of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B is a
// lower-bidiagonal matrix.
//
// The remaining elements of A store the data needed to construct Q and P.
// The matrices Q and P are products of elementary reflectors
// Q = H_1 * H_2 * ... * H_nb
// P = G_1 * G_2 * ... * G_nb
// where
// H_i = I - tauQ[i] * v_i * v_i^T
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, and n = 5
// [ d e u1 u1 u1]
// [v1 d e u2 u2]
// [v1 v2 d e u3]
// [v1 v2 v3 d e]
// [v1 v2 v3 v4 d]
// [v1 v2 v3 v4 v5]
// and when m = 5, n = 6
// [ d u1 u1 u1 u1 u1]
// [ e d u2 u2 u2 u2]
// [v1 e d u3 u3 u3]
// [v1 v2 e d u4 u4]
// [v1 v2 v3 e d u5]
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1.
//
// work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) and this function will panic otherwise.
// Dgebrd is blocked decomposition, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Dgebrd,
// the optimal work length will be stored into work[0].
//
// Dgebrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
checkMatrix(m, n, a, lda)
minmn := min(m, n)
if len(d) < minmn {
panic(badD)
}
if len(e) < minmn-1 {
panic(badE)
}
if len(tauQ) < minmn {
panic(badTauQ)
}
if len(tauP) < minmn {
panic(badTauP)
}
// Calculate optimal work.
nb := impl.Ilaenv(1, "DGEBRD", " ", m, n, -1, -1)
if lwork == -1 {
lworkOpt := (m + n) * nb
work[0] = float64(lworkOpt)
return
}
ws := max(m, n)
if lwork < ws {
panic(badWork)
}
if len(work) < lwork {
panic(badWork)
}
var nx int
if nb > 1 && nb < minmn {
nx = max(nb, impl.Ilaenv(3, "DGEBRD", " ", m, n, -1, -1))
if nx < minmn {
ws = (m + n) * nb
if lwork < ws {
nbmin := impl.Ilaenv(2, "DGEBRD", " ", m, n, -1, -1)
if lwork >= (m+n)*nbmin {
nb = lwork / (m + n)
} else {
nb = minmn
nx = minmn
}
}
}
} else {
nx = minmn
}
bi := blas64.Implementation()
ldworkx := nb
ldworky := nb
var i int
// Netlib lapack has minmn - nx, but this makes the last nx rows (which by
// default is large) be unblocked. As written here, the blocking is more
// consistent.
for i = 0; i < minmn-nb; i += nb {
// Reduce rows and columns i:i+nb to bidiagonal form and return
// the matrices X and Y which are needed to update the unreduced
// part of the matrix.
// X is stored in the first m rows of work, y in the next rows.
x := work[:m*ldworkx]
y := work[m*ldworkx:]
impl.Dlabrd(m-i, n-i, nb, a[i*lda+i:], lda,
d[i:], e[i:], tauQ[i:], tauP[i:],
x, ldworkx, y, ldworky)
// Update the trailing submatrix A[i+nb:m,i+nb:n], using an update
// of the form A := A - V*Y**T - X*U**T
bi.Dgemm(blas.NoTrans, blas.Trans, m-i-nb, n-i-nb, nb,
-1, a[(i+nb)*lda+i:], lda, y[nb*ldworky:], ldworky,
1, a[(i+nb)*lda+i+nb:], lda)
bi.Dgemm(blas.NoTrans, blas.NoTrans, m-i-nb, n-i-nb, nb,
-1, x[nb*ldworkx:], ldworkx, a[i*lda+i+nb:], lda,
1, a[(i+nb)*lda+i+nb:], lda)
// Copy diagonal and off-diagonal elements of B back into A.
if m >= n {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[j*lda+j+1] = e[j]
}
} else {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[(j+1)*lda+j] = e[j]
}
}
}
// Use unblocked code to reduce the remainder of the matrix.
impl.Dgebd2(m-i, n-i, a[i*lda+i:], lda, d[i:], e[i:], tauQ[i:], tauP[i:], work)
}