mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			98 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package gonum
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| // Dlasq1 computes the singular values of an n×n bidiagonal matrix with diagonal
 | ||
| // d and off-diagonal e. On exit, d contains the singular values in decreasing
 | ||
| // order, and e is overwritten. d must have length at least n, e must have
 | ||
| // length at least n-1, and the input work must have length at least 4*n. Dlasq1
 | ||
| // will panic if these conditions are not met.
 | ||
| //
 | ||
| // Dlasq1 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dlasq1(n int, d, e, work []float64) (info int) {
 | ||
| 	// TODO(btracey): replace info with an error.
 | ||
| 	if n < 0 {
 | ||
| 		panic(nLT0)
 | ||
| 	}
 | ||
| 	if len(work) < 4*n {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 	if len(d) < n {
 | ||
| 		panic("lapack: length of d less than n")
 | ||
| 	}
 | ||
| 	if len(e) < n-1 {
 | ||
| 		panic("lapack: length of e less than n-1")
 | ||
| 	}
 | ||
| 	if n == 0 {
 | ||
| 		return info
 | ||
| 	}
 | ||
| 	if n == 1 {
 | ||
| 		d[0] = math.Abs(d[0])
 | ||
| 		return info
 | ||
| 	}
 | ||
| 	if n == 2 {
 | ||
| 		d[1], d[0] = impl.Dlas2(d[0], e[0], d[1])
 | ||
| 		return info
 | ||
| 	}
 | ||
| 	// Estimate the largest singular value.
 | ||
| 	var sigmx float64
 | ||
| 	for i := 0; i < n-1; i++ {
 | ||
| 		d[i] = math.Abs(d[i])
 | ||
| 		sigmx = math.Max(sigmx, math.Abs(e[i]))
 | ||
| 	}
 | ||
| 	d[n-1] = math.Abs(d[n-1])
 | ||
| 	// Early return if sigmx is zero (matrix is already diagonal).
 | ||
| 	if sigmx == 0 {
 | ||
| 		impl.Dlasrt(lapack.SortDecreasing, n, d)
 | ||
| 		return info
 | ||
| 	}
 | ||
| 
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		sigmx = math.Max(sigmx, d[i])
 | ||
| 	}
 | ||
| 
 | ||
| 	// Copy D and E into WORK (in the Z format) and scale (squaring the
 | ||
| 	// input data makes scaling by a power of the radix pointless).
 | ||
| 
 | ||
| 	eps := dlamchP
 | ||
| 	safmin := dlamchS
 | ||
| 	scale := math.Sqrt(eps / safmin)
 | ||
| 	bi := blas64.Implementation()
 | ||
| 	bi.Dcopy(n, d, 1, work, 2)
 | ||
| 	bi.Dcopy(n-1, e, 1, work[1:], 2)
 | ||
| 	impl.Dlascl(lapack.General, 0, 0, sigmx, scale, 2*n-1, 1, work, 1)
 | ||
| 
 | ||
| 	// Compute the q's and e's.
 | ||
| 	for i := 0; i < 2*n-1; i++ {
 | ||
| 		work[i] *= work[i]
 | ||
| 	}
 | ||
| 	work[2*n-1] = 0
 | ||
| 
 | ||
| 	info = impl.Dlasq2(n, work)
 | ||
| 	if info == 0 {
 | ||
| 		for i := 0; i < n; i++ {
 | ||
| 			d[i] = math.Sqrt(work[i])
 | ||
| 		}
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
 | ||
| 	} else if info == 2 {
 | ||
| 		// Maximum number of iterations exceeded. Move data from work
 | ||
| 		// into D and E so the calling subroutine can try to finish.
 | ||
| 		for i := 0; i < n; i++ {
 | ||
| 			d[i] = math.Sqrt(work[2*i])
 | ||
| 			e[i] = math.Sqrt(work[2*i+1])
 | ||
| 		}
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, e, 1)
 | ||
| 	}
 | ||
| 	return info
 | ||
| }
 | 
