mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			109 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package gonum
 | ||
| 
 | ||
| import (
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| // Dgeqrf computes the QR factorization of the m×n matrix A using a blocked
 | ||
| // algorithm. See the documentation for Dgeqr2 for a description of the
 | ||
| // parameters at entry and exit.
 | ||
| //
 | ||
| // work is temporary storage, and lwork specifies the usable memory length.
 | ||
| // The length of work must be at least max(1, lwork) and lwork must be -1
 | ||
| // or at least n, otherwise this function will panic.
 | ||
| // Dgeqrf is a blocked QR factorization, but the block size is limited
 | ||
| // by the temporary space available. If lwork == -1, instead of performing Dgeqrf,
 | ||
| // the optimal work length will be stored into work[0].
 | ||
| //
 | ||
| // tau must have length at least min(m,n), and this function will panic otherwise.
 | ||
| func (impl Implementation) Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
 | ||
| 	switch {
 | ||
| 	case m < 0:
 | ||
| 		panic(mLT0)
 | ||
| 	case n < 0:
 | ||
| 		panic(nLT0)
 | ||
| 	case lda < max(1, n):
 | ||
| 		panic(badLdA)
 | ||
| 	case lwork < max(1, n) && lwork != -1:
 | ||
| 		panic(badWork)
 | ||
| 	case len(work) < max(1, lwork):
 | ||
| 		panic(shortWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Quick return if possible.
 | ||
| 	k := min(m, n)
 | ||
| 	if k == 0 {
 | ||
| 		work[0] = 1
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// nb is the optimal blocksize, i.e. the number of columns transformed at a time.
 | ||
| 	nb := impl.Ilaenv(1, "DGEQRF", " ", m, n, -1, -1)
 | ||
| 	if lwork == -1 {
 | ||
| 		work[0] = float64(n * nb)
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(a) < (m-1)*lda+n {
 | ||
| 		panic("lapack: insufficient length of a")
 | ||
| 	}
 | ||
| 	if len(tau) < k {
 | ||
| 		panic(badTau)
 | ||
| 	}
 | ||
| 
 | ||
| 	nbmin := 2 // Minimal block size.
 | ||
| 	var nx int // Use unblocked (unless changed in the next for loop)
 | ||
| 	iws := n
 | ||
| 	ldwork := nb
 | ||
| 	// Only consider blocked if the suggested block size is > 1 and the
 | ||
| 	// number of rows or columns is sufficiently large.
 | ||
| 	if 1 < nb && nb < k {
 | ||
| 		// nx is the block size at which the code switches from blocked
 | ||
| 		// to unblocked.
 | ||
| 		nx = max(0, impl.Ilaenv(3, "DGEQRF", " ", m, n, -1, -1))
 | ||
| 		if k > nx {
 | ||
| 			iws = ldwork * n
 | ||
| 			if lwork < iws {
 | ||
| 				// Not enough workspace to use the optimal block
 | ||
| 				// size. Get the minimum block size instead.
 | ||
| 				nb = lwork / n
 | ||
| 				nbmin = max(2, impl.Ilaenv(2, "DGEQRF", " ", m, n, -1, -1))
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Compute QR using a blocked algorithm.
 | ||
| 	var i int
 | ||
| 	if nbmin <= nb && nb < k && nx < k {
 | ||
| 		for i = 0; i < k-nx; i += nb {
 | ||
| 			ib := min(k-i, nb)
 | ||
| 			// Compute the QR factorization of the current block.
 | ||
| 			impl.Dgeqr2(m-i, ib, a[i*lda+i:], lda, tau[i:], work)
 | ||
| 			if i+ib < n {
 | ||
| 				// Form the triangular factor of the block reflector and apply H^T
 | ||
| 				// In Dlarft, work becomes the T matrix.
 | ||
| 				impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
 | ||
| 					a[i*lda+i:], lda,
 | ||
| 					tau[i:],
 | ||
| 					work, ldwork)
 | ||
| 				impl.Dlarfb(blas.Left, blas.Trans, lapack.Forward, lapack.ColumnWise,
 | ||
| 					m-i, n-i-ib, ib,
 | ||
| 					a[i*lda+i:], lda,
 | ||
| 					work, ldwork,
 | ||
| 					a[i*lda+i+ib:], lda,
 | ||
| 					work[ib*ldwork:], ldwork)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// Call unblocked code on the remaining columns.
 | ||
| 	if i < k {
 | ||
| 		impl.Dgeqr2(m-i, n-i, a[i*lda+i:], lda, tau[i:], work)
 | ||
| 	}
 | ||
| 	work[0] = float64(iws)
 | ||
| }
 | 
