mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2013 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| //go:generate go run generate_unit.go
 | ||
| 
 | ||
| // Package unit provides a set of types and constants that facilitate
 | ||
| // the use of the International System of Units (SI).
 | ||
| //
 | ||
| // The unit package provides two main functionalities: compile-time type-safe
 | ||
| // base SI units and common derived units; and a system for dynamically
 | ||
| // extensible user-defined units.
 | ||
| //
 | ||
| // Static SI units
 | ||
| //
 | ||
| // This package provides a number of types representing either an SI base
 | ||
| // unit or a common combination of base units, named for the physical quantity
 | ||
| // it represents (Length, Mass, Pressure, etc.). Each type is defined from
 | ||
| // float64. The value of the float64 represents the quantity of that unit as
 | ||
| // expressed in SI base units (kilogram, metre, Pascal, etc.). For example,
 | ||
| //
 | ||
| // 	height := 1.6 * unit.Metre
 | ||
| // 	acc := unit.Acceleration(9.8)
 | ||
| //
 | ||
| // creates a variable named 'height' with a value of 1.6 metres, and
 | ||
| // a variable named 'acc' with a value of 9.8 metres per second squared.
 | ||
| // These types can be used to add compile-time safety to code. For
 | ||
| // example,
 | ||
| //
 | ||
| // 	func unitVolume(t unit.Temperature, p unit.Pressure) unit.Volume {
 | ||
| // 		...
 | ||
| // 	}
 | ||
| //
 | ||
| // 	func main(){
 | ||
| // 		t := 300 * unit.Kelvin
 | ||
| // 		p := 500 * unit.Kilo * unit.Pascal
 | ||
| // 		v := unitVolume(p, t) // compile-time error
 | ||
| // 	}
 | ||
| //
 | ||
| // gives a compile-time error (temperature type does not match pressure type)
 | ||
| // while the corresponding code using float64 runs without error.
 | ||
| //
 | ||
| // 	func float64Volume(temperature, pressure float64) float64 {
 | ||
| // 		...
 | ||
| // 	}
 | ||
| //
 | ||
| // 	func main(){
 | ||
| // 		t := 300.0 // Kelvin
 | ||
| // 		p := 500000.0 // Pascals
 | ||
| // 		v := float64Volume(p, t) // no error
 | ||
| // 	}
 | ||
| //
 | ||
| // Many types have constants defined representing named SI units (Metre,
 | ||
| // Kilogram, etc. ) or SI derived units (Pascal, Hz, etc.). The unit package
 | ||
| // additionally provides untyped constants for SI prefixes, so the following
 | ||
| // are all equivalent.
 | ||
| //
 | ||
| // 	l := 0.001 * unit.Metre
 | ||
| // 	k := 1 * unit.Milli * unit.Metre
 | ||
| // 	j := unit.Length(0.001)
 | ||
| //
 | ||
| // Additional SI-derived static units can also be defined by adding types that
 | ||
| // satisfy the Uniter interface described below.
 | ||
| //
 | ||
| // Dynamic user-extensible unit system
 | ||
| //
 | ||
| // The unit package also provides the Unit type, a representation of a general
 | ||
| // dimensional value. Unit can be used to help prevent errors of dimensionality
 | ||
| // when multiplying or dividing dimensional numbers defined a run time. New
 | ||
| // variables of type Unit can be created with the New function and the
 | ||
| // Dimensions map. For example, the code
 | ||
| //
 | ||
| // 	rate := unit.New(1 * unit.Milli, Dimensions{MoleDim: 1, TimeDim: -1})
 | ||
| //
 | ||
| // creates a variable "rate" which has a value of 1e-3 mol/s. Methods of
 | ||
| // unit can be used to modify this value, for example:
 | ||
| //
 | ||
| // 	rate.Mul(1 * unit.Centi * unit.Metre).Div(1 * unit.Milli * unit.Volt)
 | ||
| //
 | ||
| // To convert the unit back into a typed float64 value, the From methods
 | ||
| // of the dimensional types should be used. From will return an error if the
 | ||
| // dimensions do not match.
 | ||
| //
 | ||
| // 	var energy unit.Energy
 | ||
| // 	err := energy.From(acc)
 | ||
| //
 | ||
| // Domain-specific problems may need custom dimensions, and for this purpose
 | ||
| // NewDimension should be used to help avoid accidental overlap between
 | ||
| // packages. For example, results from a blood test may be measured in
 | ||
| // "White blood cells per slide". In this case, NewDimension should be
 | ||
| // used to create a 'WhiteBloodCell' dimension. NewDimension takes in a
 | ||
| // string which will be used for printing that dimension, and will return
 | ||
| // a unique dimension number.
 | ||
| //
 | ||
| // 	wbc := unit.NewDimension("WhiteBloodCell")
 | ||
| //
 | ||
| // NewDimension should not be used, however, to create the unit of 'Slide',
 | ||
| // because in this case slide is just a measurement of liquid volume. Instead,
 | ||
| // a constant could be defined.
 | ||
| //
 | ||
| // 	const Slide unit.Volume =  0.1 * unit.Micro * unit.Litre
 | ||
| //
 | ||
| // Note that unit cannot catch all errors related to dimensionality.
 | ||
| // Different physical ideas are sometimes expressed with the same dimensions
 | ||
| // and unit is incapable of catching these mismatches. For example, energy and
 | ||
| // torque are both expressed as force times distance (Newton-metres in SI),
 | ||
| // but it is wrong to say that a torque of 10 N·m is the same as 10 J, even
 | ||
| // though the dimensions agree. Despite this, using the defined types to
 | ||
| // represent units can help to catch errors at compile-time. For example,
 | ||
| // using unit.Torque allows you to define a statically typed function like so
 | ||
| //
 | ||
| // 	func LeverLength(apply unit.Force, want unit.Torque) unit.Length {
 | ||
| //		return unit.Length(float64(want)/float64(apply))
 | ||
| // 	}
 | ||
| //
 | ||
| // This will prevent an energy value being provided to LeverLength in place
 | ||
| // of a torque value.
 | ||
| package unit // import "gonum.org/v1/gonum/unit"
 | 
