mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 02:26:59 +08:00 
			
		
		
		
	 17ea55aedb
			
		
	
	17ea55aedb
	
	
	
		
			
			Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g
Some additional manual editing of odd formatting.
		
	
		
			
				
	
	
		
			1244 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1244 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package testlapack
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"golang.org/x/exp/rand"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/floats"
 | ||
| )
 | ||
| 
 | ||
| // Dlatm1 computes the entries of dst as specified by mode, cond and rsign.
 | ||
| //
 | ||
| // mode describes how dst will be computed:
 | ||
| //  |mode| == 1: dst[0] = 1 and dst[1:n] = 1/cond
 | ||
| //  |mode| == 2: dst[:n-1] = 1/cond and dst[n-1] = 1
 | ||
| //  |mode| == 3: dst[i] = cond^{-i/(n-1)}, i=0,...,n-1
 | ||
| //  |mode| == 4: dst[i] = 1 - i*(1-1/cond)/(n-1)
 | ||
| //  |mode| == 5: dst[i] = random number in the range (1/cond, 1) such that
 | ||
| //                    their logarithms are uniformly distributed
 | ||
| //  |mode| == 6: dst[i] = random number from the distribution given by dist
 | ||
| // If mode is negative, the order of the elements of dst will be reversed.
 | ||
| // For other values of mode Dlatm1 will panic.
 | ||
| //
 | ||
| // If rsign is true and mode is not ±6, each entry of dst will be multiplied by 1
 | ||
| // or -1 with probability 0.5
 | ||
| //
 | ||
| // dist specifies the type of distribution to be used when mode == ±6:
 | ||
| //  dist == 1: Uniform[0,1)
 | ||
| //  dist == 2: Uniform[-1,1)
 | ||
| //  dist == 3: Normal(0,1)
 | ||
| // For other values of dist Dlatm1 will panic.
 | ||
| //
 | ||
| // rnd is used as a source of random numbers.
 | ||
| func Dlatm1(dst []float64, mode int, cond float64, rsign bool, dist int, rnd *rand.Rand) {
 | ||
| 	amode := mode
 | ||
| 	if amode < 0 {
 | ||
| 		amode = -amode
 | ||
| 	}
 | ||
| 	if amode < 1 || 6 < amode {
 | ||
| 		panic("testlapack: invalid mode")
 | ||
| 	}
 | ||
| 	if cond < 1 {
 | ||
| 		panic("testlapack: cond < 1")
 | ||
| 	}
 | ||
| 	if amode == 6 && (dist < 1 || 3 < dist) {
 | ||
| 		panic("testlapack: invalid dist")
 | ||
| 	}
 | ||
| 
 | ||
| 	n := len(dst)
 | ||
| 	if n == 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	switch amode {
 | ||
| 	case 1:
 | ||
| 		dst[0] = 1
 | ||
| 		for i := 1; i < n; i++ {
 | ||
| 			dst[i] = 1 / cond
 | ||
| 		}
 | ||
| 	case 2:
 | ||
| 		for i := 0; i < n-1; i++ {
 | ||
| 			dst[i] = 1
 | ||
| 		}
 | ||
| 		dst[n-1] = 1 / cond
 | ||
| 	case 3:
 | ||
| 		dst[0] = 1
 | ||
| 		if n > 1 {
 | ||
| 			alpha := math.Pow(cond, -1/float64(n-1))
 | ||
| 			for i := 1; i < n; i++ {
 | ||
| 				dst[i] = math.Pow(alpha, float64(i))
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case 4:
 | ||
| 		dst[0] = 1
 | ||
| 		if n > 1 {
 | ||
| 			condInv := 1 / cond
 | ||
| 			alpha := (1 - condInv) / float64(n-1)
 | ||
| 			for i := 1; i < n; i++ {
 | ||
| 				dst[i] = float64(n-i-1)*alpha + condInv
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case 5:
 | ||
| 		alpha := math.Log(1 / cond)
 | ||
| 		for i := range dst {
 | ||
| 			dst[i] = math.Exp(alpha * rnd.Float64())
 | ||
| 		}
 | ||
| 	case 6:
 | ||
| 		switch dist {
 | ||
| 		case 1:
 | ||
| 			for i := range dst {
 | ||
| 				dst[i] = rnd.Float64()
 | ||
| 			}
 | ||
| 		case 2:
 | ||
| 			for i := range dst {
 | ||
| 				dst[i] = 2*rnd.Float64() - 1
 | ||
| 			}
 | ||
| 		case 3:
 | ||
| 			for i := range dst {
 | ||
| 				dst[i] = rnd.NormFloat64()
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if rsign && amode != 6 {
 | ||
| 		for i, v := range dst {
 | ||
| 			if rnd.Float64() < 0.5 {
 | ||
| 				dst[i] = -v
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if mode < 0 {
 | ||
| 		for i := 0; i < n/2; i++ {
 | ||
| 			dst[i], dst[n-i-1] = dst[n-i-1], dst[i]
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Dlagsy generates an n×n symmetric matrix A, by pre- and post- multiplying a
 | ||
| // real diagonal matrix D with a random orthogonal matrix:
 | ||
| //  A = U * D * Uᵀ.
 | ||
| //
 | ||
| // work must have length at least 2*n, otherwise Dlagsy will panic.
 | ||
| //
 | ||
| // The parameter k is unused but it must satisfy
 | ||
| //  0 <= k <= n-1.
 | ||
| func Dlagsy(n, k int, d []float64, a []float64, lda int, rnd *rand.Rand, work []float64) {
 | ||
| 	checkMatrix(n, n, a, lda)
 | ||
| 	if k < 0 || max(0, n-1) < k {
 | ||
| 		panic("testlapack: invalid value of k")
 | ||
| 	}
 | ||
| 	if len(d) != n {
 | ||
| 		panic("testlapack: bad length of d")
 | ||
| 	}
 | ||
| 	if len(work) < 2*n {
 | ||
| 		panic("testlapack: insufficient work length")
 | ||
| 	}
 | ||
| 
 | ||
| 	// Initialize lower triangle of A to diagonal matrix.
 | ||
| 	for i := 1; i < n; i++ {
 | ||
| 		for j := 0; j < i; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		a[i*lda+i] = d[i]
 | ||
| 	}
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 
 | ||
| 	// Generate lower triangle of symmetric matrix.
 | ||
| 	for i := n - 2; i >= 0; i-- {
 | ||
| 		for j := 0; j < n-i; j++ {
 | ||
| 			work[j] = rnd.NormFloat64()
 | ||
| 		}
 | ||
| 		wn := bi.Dnrm2(n-i, work[:n-i], 1)
 | ||
| 		wa := math.Copysign(wn, work[0])
 | ||
| 		var tau float64
 | ||
| 		if wn != 0 {
 | ||
| 			wb := work[0] + wa
 | ||
| 			bi.Dscal(n-i-1, 1/wb, work[1:n-i], 1)
 | ||
| 			work[0] = 1
 | ||
| 			tau = wb / wa
 | ||
| 		}
 | ||
| 
 | ||
| 		// Apply random reflection to A[i:n,i:n] from the left and the
 | ||
| 		// right.
 | ||
| 		//
 | ||
| 		// Compute y := tau * A * u.
 | ||
| 		bi.Dsymv(blas.Lower, n-i, tau, a[i*lda+i:], lda, work[:n-i], 1, 0, work[n:2*n-i], 1)
 | ||
| 
 | ||
| 		// Compute v := y - 1/2 * tau * ( y, u ) * u.
 | ||
| 		alpha := -0.5 * tau * bi.Ddot(n-i, work[n:2*n-i], 1, work[:n-i], 1)
 | ||
| 		bi.Daxpy(n-i, alpha, work[:n-i], 1, work[n:2*n-i], 1)
 | ||
| 
 | ||
| 		// Apply the transformation as a rank-2 update to A[i:n,i:n].
 | ||
| 		bi.Dsyr2(blas.Lower, n-i, -1, work[:n-i], 1, work[n:2*n-i], 1, a[i*lda+i:], lda)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Store full symmetric matrix.
 | ||
| 	for i := 1; i < n; i++ {
 | ||
| 		for j := 0; j < i; j++ {
 | ||
| 			a[j*lda+i] = a[i*lda+j]
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Dlagge generates a real general m×n matrix A, by pre- and post-multiplying
 | ||
| // a real diagonal matrix D with random orthogonal matrices:
 | ||
| //  A = U*D*V.
 | ||
| //
 | ||
| // d must have length min(m,n), and work must have length m+n, otherwise Dlagge
 | ||
| // will panic.
 | ||
| //
 | ||
| // The parameters ku and kl are unused but they must satisfy
 | ||
| //  0 <= kl <= m-1,
 | ||
| //  0 <= ku <= n-1.
 | ||
| func Dlagge(m, n, kl, ku int, d []float64, a []float64, lda int, rnd *rand.Rand, work []float64) {
 | ||
| 	checkMatrix(m, n, a, lda)
 | ||
| 	if kl < 0 || max(0, m-1) < kl {
 | ||
| 		panic("testlapack: invalid value of kl")
 | ||
| 	}
 | ||
| 	if ku < 0 || max(0, n-1) < ku {
 | ||
| 		panic("testlapack: invalid value of ku")
 | ||
| 	}
 | ||
| 	if len(d) != min(m, n) {
 | ||
| 		panic("testlapack: bad length of d")
 | ||
| 	}
 | ||
| 	if len(work) < m+n {
 | ||
| 		panic("testlapack: insufficient work length")
 | ||
| 	}
 | ||
| 
 | ||
| 	// Initialize A to diagonal matrix.
 | ||
| 	for i := 0; i < m; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for i := 0; i < min(m, n); i++ {
 | ||
| 		a[i*lda+i] = d[i]
 | ||
| 	}
 | ||
| 
 | ||
| 	// Quick exit if the user wants a diagonal matrix.
 | ||
| 	// if kl == 0 && ku == 0 {
 | ||
| 	// 	return
 | ||
| 	// }
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 
 | ||
| 	// Pre- and post-multiply A by random orthogonal matrices.
 | ||
| 	for i := min(m, n) - 1; i >= 0; i-- {
 | ||
| 		if i < m-1 {
 | ||
| 			for j := 0; j < m-i; j++ {
 | ||
| 				work[j] = rnd.NormFloat64()
 | ||
| 			}
 | ||
| 			wn := bi.Dnrm2(m-i, work[:m-i], 1)
 | ||
| 			wa := math.Copysign(wn, work[0])
 | ||
| 			var tau float64
 | ||
| 			if wn != 0 {
 | ||
| 				wb := work[0] + wa
 | ||
| 				bi.Dscal(m-i-1, 1/wb, work[1:m-i], 1)
 | ||
| 				work[0] = 1
 | ||
| 				tau = wb / wa
 | ||
| 			}
 | ||
| 
 | ||
| 			// Multiply A[i:m,i:n] by random reflection from the left.
 | ||
| 			bi.Dgemv(blas.Trans, m-i, n-i,
 | ||
| 				1, a[i*lda+i:], lda, work[:m-i], 1,
 | ||
| 				0, work[m:m+n-i], 1)
 | ||
| 			bi.Dger(m-i, n-i,
 | ||
| 				-tau, work[:m-i], 1, work[m:m+n-i], 1,
 | ||
| 				a[i*lda+i:], lda)
 | ||
| 		}
 | ||
| 		if i < n-1 {
 | ||
| 			for j := 0; j < n-i; j++ {
 | ||
| 				work[j] = rnd.NormFloat64()
 | ||
| 			}
 | ||
| 			wn := bi.Dnrm2(n-i, work[:n-i], 1)
 | ||
| 			wa := math.Copysign(wn, work[0])
 | ||
| 			var tau float64
 | ||
| 			if wn != 0 {
 | ||
| 				wb := work[0] + wa
 | ||
| 				bi.Dscal(n-i-1, 1/wb, work[1:n-i], 1)
 | ||
| 				work[0] = 1
 | ||
| 				tau = wb / wa
 | ||
| 			}
 | ||
| 
 | ||
| 			// Multiply A[i:m,i:n] by random reflection from the right.
 | ||
| 			bi.Dgemv(blas.NoTrans, m-i, n-i,
 | ||
| 				1, a[i*lda+i:], lda, work[:n-i], 1,
 | ||
| 				0, work[n:n+m-i], 1)
 | ||
| 			bi.Dger(m-i, n-i,
 | ||
| 				-tau, work[n:n+m-i], 1, work[:n-i], 1,
 | ||
| 				a[i*lda+i:], lda)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// TODO(vladimir-ch): Reduce number of subdiagonals to kl and number of
 | ||
| 	// superdiagonals to ku.
 | ||
| }
 | ||
| 
 | ||
| // dlarnv fills dst with random numbers from a uniform or normal distribution
 | ||
| // specified by dist:
 | ||
| //  dist=1: uniform(0,1),
 | ||
| //  dist=2: uniform(-1,1),
 | ||
| //  dist=3: normal(0,1).
 | ||
| // For other values of dist dlarnv will panic.
 | ||
| func dlarnv(dst []float64, dist int, rnd *rand.Rand) {
 | ||
| 	switch dist {
 | ||
| 	default:
 | ||
| 		panic("testlapack: invalid dist")
 | ||
| 	case 1:
 | ||
| 		for i := range dst {
 | ||
| 			dst[i] = rnd.Float64()
 | ||
| 		}
 | ||
| 	case 2:
 | ||
| 		for i := range dst {
 | ||
| 			dst[i] = 2*rnd.Float64() - 1
 | ||
| 		}
 | ||
| 	case 3:
 | ||
| 		for i := range dst {
 | ||
| 			dst[i] = rnd.NormFloat64()
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // dlattr generates an n×n triangular test matrix A with its properties uniquely
 | ||
| // determined by imat and uplo, and returns whether A has unit diagonal. If diag
 | ||
| // is blas.Unit, the diagonal elements are set so that A[k,k]=k.
 | ||
| //
 | ||
| // trans specifies whether the matrix A or its transpose will be used.
 | ||
| //
 | ||
| // If imat is greater than 10, dlattr also generates the right hand side of the
 | ||
| // linear system A*x=b, or Aᵀ*x=b. Valid values of imat are 7, and all between 11
 | ||
| // and 19, inclusive.
 | ||
| //
 | ||
| // b mush have length n, and work must have length 3*n, and dlattr will panic
 | ||
| // otherwise.
 | ||
| func dlattr(imat int, uplo blas.Uplo, trans blas.Transpose, n int, a []float64, lda int, b, work []float64, rnd *rand.Rand) (diag blas.Diag) {
 | ||
| 	checkMatrix(n, n, a, lda)
 | ||
| 	if len(b) != n {
 | ||
| 		panic("testlapack: bad length of b")
 | ||
| 	}
 | ||
| 	if len(work) < 3*n {
 | ||
| 		panic("testlapack: insufficient length of work")
 | ||
| 	}
 | ||
| 	if uplo != blas.Upper && uplo != blas.Lower {
 | ||
| 		panic("testlapack: bad uplo")
 | ||
| 	}
 | ||
| 	if trans != blas.Trans && trans != blas.NoTrans {
 | ||
| 		panic("testlapack: bad trans")
 | ||
| 	}
 | ||
| 
 | ||
| 	if n == 0 {
 | ||
| 		return blas.NonUnit
 | ||
| 	}
 | ||
| 
 | ||
| 	ulp := dlamchE * dlamchB
 | ||
| 	smlnum := dlamchS
 | ||
| 	bignum := (1 - ulp) / smlnum
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 
 | ||
| 	switch imat {
 | ||
| 	default:
 | ||
| 		// TODO(vladimir-ch): Implement the remaining cases.
 | ||
| 		panic("testlapack: invalid or unimplemented imat")
 | ||
| 	case 7:
 | ||
| 		// Identity matrix. The diagonal is set to NaN.
 | ||
| 		diag = blas.Unit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				a[i*lda+i] = math.NaN()
 | ||
| 				for j := i + 1; j < n; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j < i; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 				a[i*lda+i] = math.NaN()
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case 11:
 | ||
| 		// Generate a triangular matrix with elements between -1 and 1,
 | ||
| 		// give the diagonal norm 2 to make it well-conditioned, and
 | ||
| 		// make the right hand side large so that it requires scaling.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n-1; i++ {
 | ||
| 				dlarnv(a[i*lda+i:i*lda+n], 2, rnd)
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 1; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i+1], 2, rnd)
 | ||
| 			}
 | ||
| 		}
 | ||
| 		for i := 0; i < n; i++ {
 | ||
| 			a[i*lda+i] = math.Copysign(2, a[i*lda+i])
 | ||
| 		}
 | ||
| 		// Set the right hand side so that the largest value is bignum.
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 		imax := bi.Idamax(n, b, 1)
 | ||
| 		bscal := bignum / math.Max(1, b[imax])
 | ||
| 		bi.Dscal(n, bscal, b, 1)
 | ||
| 	case 12:
 | ||
| 		// Make the first diagonal element in the solve small to cause
 | ||
| 		// immediate overflow when dividing by T[j,j]. The off-diagonal
 | ||
| 		// elements are small (cnorm[j] < 1).
 | ||
| 		diag = blas.NonUnit
 | ||
| 		tscal := 1 / math.Max(1, float64(n-1))
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda+i:i*lda+n], 2, rnd)
 | ||
| 				bi.Dscal(n-i-1, tscal, a[i*lda+i+1:], 1)
 | ||
| 				a[i*lda+i] = math.Copysign(1, a[i*lda+i])
 | ||
| 			}
 | ||
| 			a[(n-1)*lda+n-1] *= smlnum
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i+1], 2, rnd)
 | ||
| 				bi.Dscal(i, tscal, a[i*lda:], 1)
 | ||
| 				a[i*lda+i] = math.Copysign(1, a[i*lda+i])
 | ||
| 			}
 | ||
| 			a[0] *= smlnum
 | ||
| 		}
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 	case 13:
 | ||
| 		// Make the first diagonal element in the solve small to cause
 | ||
| 		// immediate overflow when dividing by T[j,j]. The off-diagonal
 | ||
| 		// elements are O(1) (cnorm[j] > 1).
 | ||
| 		diag = blas.NonUnit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda+i:i*lda+n], 2, rnd)
 | ||
| 				a[i*lda+i] = math.Copysign(1, a[i*lda+i])
 | ||
| 			}
 | ||
| 			a[(n-1)*lda+n-1] *= smlnum
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i+1], 2, rnd)
 | ||
| 				a[i*lda+i] = math.Copysign(1, a[i*lda+i])
 | ||
| 			}
 | ||
| 			a[0] *= smlnum
 | ||
| 		}
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 	case 14:
 | ||
| 		// T is diagonal with small numbers on the diagonal to
 | ||
| 		// make the growth factor underflow, but a small right hand side
 | ||
| 		// chosen so that the solution does not overflow.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := i + 1; j < n; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 				if (n-1-i)&0x2 == 0 {
 | ||
| 					a[i*lda+i] = smlnum
 | ||
| 				} else {
 | ||
| 					a[i*lda+i] = 1
 | ||
| 				}
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j < i; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 				if i&0x2 == 0 {
 | ||
| 					a[i*lda+i] = smlnum
 | ||
| 				} else {
 | ||
| 					a[i*lda+i] = 1
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Set the right hand side alternately zero and small.
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			b[0] = 0
 | ||
| 			for i := n - 1; i > 0; i -= 2 {
 | ||
| 				b[i] = 0
 | ||
| 				b[i-1] = smlnum
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n-1; i += 2 {
 | ||
| 				b[i] = 0
 | ||
| 				b[i+1] = smlnum
 | ||
| 			}
 | ||
| 			b[n-1] = 0
 | ||
| 		}
 | ||
| 	case 15:
 | ||
| 		// Make the diagonal elements small to cause gradual overflow
 | ||
| 		// when dividing by T[j,j]. To control the amount of scaling
 | ||
| 		// needed, the matrix is bidiagonal.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		texp := 1 / math.Max(1, float64(n-1))
 | ||
| 		tscal := math.Pow(smlnum, texp)
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				a[i*lda+i] = tscal
 | ||
| 				if i < n-1 {
 | ||
| 					a[i*lda+i+1] = -1
 | ||
| 				}
 | ||
| 				for j := i + 2; j < n; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j < i-1; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 				if i > 0 {
 | ||
| 					a[i*lda+i-1] = -1
 | ||
| 				}
 | ||
| 				a[i*lda+i] = tscal
 | ||
| 			}
 | ||
| 		}
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 	case 16:
 | ||
| 		// One zero diagonal element.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda+i:i*lda+n], 2, rnd)
 | ||
| 				a[i*lda+i] = math.Copysign(2, a[i*lda+i])
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i+1], 2, rnd)
 | ||
| 				a[i*lda+i] = math.Copysign(2, a[i*lda+i])
 | ||
| 			}
 | ||
| 		}
 | ||
| 		iy := n / 2
 | ||
| 		a[iy*lda+iy] = 0
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 		bi.Dscal(n, 2, b, 1)
 | ||
| 	case 17:
 | ||
| 		// Make the offdiagonal elements large to cause overflow when
 | ||
| 		// adding a column of T. In the non-transposed case, the matrix
 | ||
| 		// is constructed to cause overflow when adding a column in
 | ||
| 		// every other step.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		tscal := (1 - ulp) / (dlamchS / ulp)
 | ||
| 		texp := 1.0
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := i; j < n; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 			for j := n - 1; j >= 1; j -= 2 {
 | ||
| 				a[j] = -tscal / float64(n+1)
 | ||
| 				a[j*lda+j] = 1
 | ||
| 				b[j] = texp * (1 - ulp)
 | ||
| 				a[j-1] = -tscal / float64(n+1) / float64(n+2)
 | ||
| 				a[(j-1)*lda+j-1] = 1
 | ||
| 				b[j-1] = texp * float64(n*n+n-1)
 | ||
| 				texp *= 2
 | ||
| 			}
 | ||
| 			b[0] = float64(n+1) / float64(n+2) * tscal
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j <= i; j++ {
 | ||
| 					a[i*lda+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 			for j := 0; j < n-1; j += 2 {
 | ||
| 				a[(n-1)*lda+j] = -tscal / float64(n+1)
 | ||
| 				a[j*lda+j] = 1
 | ||
| 				b[j] = texp * (1 - ulp)
 | ||
| 				a[(n-1)*lda+j+1] = -tscal / float64(n+1) / float64(n+2)
 | ||
| 				a[(j+1)*lda+j+1] = 1
 | ||
| 				b[j+1] = texp * float64(n*n+n-1)
 | ||
| 				texp *= 2
 | ||
| 			}
 | ||
| 			b[n-1] = float64(n+1) / float64(n+2) * tscal
 | ||
| 		}
 | ||
| 	case 18:
 | ||
| 		// Generate a unit triangular matrix with elements between -1
 | ||
| 		// and 1, and make the right hand side large so that it requires
 | ||
| 		// scaling. The diagonal is set to NaN.
 | ||
| 		diag = blas.Unit
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				a[i*lda+i] = math.NaN()
 | ||
| 				dlarnv(a[i*lda+i+1:i*lda+n], 2, rnd)
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i], 2, rnd)
 | ||
| 				a[i*lda+i] = math.NaN()
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Set the right hand side so that the largest value is bignum.
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 		iy := bi.Idamax(n, b, 1)
 | ||
| 		bnorm := math.Abs(b[iy])
 | ||
| 		bscal := bignum / math.Max(1, bnorm)
 | ||
| 		bi.Dscal(n, bscal, b, 1)
 | ||
| 	case 19:
 | ||
| 		// Generate a triangular matrix with elements between
 | ||
| 		// bignum/(n-1) and bignum so that at least one of the column
 | ||
| 		// norms will exceed bignum.
 | ||
| 		// Dlatrs cannot handle this case for (typically) n>5.
 | ||
| 		diag = blas.NonUnit
 | ||
| 		tleft := bignum / math.Max(1, float64(n-1))
 | ||
| 		tscal := bignum * (float64(n-1) / math.Max(1, float64(n)))
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda+i:i*lda+n], 2, rnd)
 | ||
| 				for j := i; j < n; j++ {
 | ||
| 					aij := a[i*lda+j]
 | ||
| 					a[i*lda+j] = math.Copysign(tleft, aij) + tscal*aij
 | ||
| 				}
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				dlarnv(a[i*lda:i*lda+i+1], 2, rnd)
 | ||
| 				for j := 0; j <= i; j++ {
 | ||
| 					aij := a[i*lda+j]
 | ||
| 					a[i*lda+j] = math.Copysign(tleft, aij) + tscal*aij
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		dlarnv(b, 2, rnd)
 | ||
| 		bi.Dscal(n, 2, b, 1)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Flip the matrix if the transpose will be used.
 | ||
| 	if trans == blas.Trans {
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			for j := 0; j < n/2; j++ {
 | ||
| 				bi.Dswap(n-2*j-1, a[j*lda+j:], 1, a[(j+1)*lda+n-j-1:], -lda)
 | ||
| 			}
 | ||
| 		case blas.Lower:
 | ||
| 			for j := 0; j < n/2; j++ {
 | ||
| 				bi.Dswap(n-2*j-1, a[j*lda+j:], lda, a[(n-j-1)*lda+j+1:], -1)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return diag
 | ||
| }
 | ||
| 
 | ||
| func checkMatrix(m, n int, a []float64, lda int) {
 | ||
| 	if m < 0 {
 | ||
| 		panic("testlapack: m < 0")
 | ||
| 	}
 | ||
| 	if n < 0 {
 | ||
| 		panic("testlapack: n < 0")
 | ||
| 	}
 | ||
| 	if lda < max(1, n) {
 | ||
| 		panic("testlapack: lda < max(1, n)")
 | ||
| 	}
 | ||
| 	if len(a) < (m-1)*lda+n {
 | ||
| 		panic("testlapack: insufficient matrix slice length")
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // randomOrthogonal returns an n×n random orthogonal matrix.
 | ||
| func randomOrthogonal(n int, rnd *rand.Rand) blas64.General {
 | ||
| 	q := eye(n, n)
 | ||
| 	x := make([]float64, n)
 | ||
| 	v := make([]float64, n)
 | ||
| 	for j := 0; j < n-1; j++ {
 | ||
| 		// x represents the j-th column of a random matrix.
 | ||
| 		for i := 0; i < j; i++ {
 | ||
| 			x[i] = 0
 | ||
| 		}
 | ||
| 		for i := j; i < n; i++ {
 | ||
| 			x[i] = rnd.NormFloat64()
 | ||
| 		}
 | ||
| 		// Compute v that represents the elementary reflector that
 | ||
| 		// annihilates the subdiagonal elements of x.
 | ||
| 		reflector(v, x, j)
 | ||
| 		// Compute Q * H_j and store the result into Q.
 | ||
| 		applyReflector(q, q, v)
 | ||
| 	}
 | ||
| 	return q
 | ||
| }
 | ||
| 
 | ||
| // reflector generates a Householder reflector v that zeros out subdiagonal
 | ||
| // entries in the j-th column of a matrix.
 | ||
| func reflector(v, col []float64, j int) {
 | ||
| 	n := len(col)
 | ||
| 	if len(v) != n {
 | ||
| 		panic("slice length mismatch")
 | ||
| 	}
 | ||
| 	if j < 0 || n <= j {
 | ||
| 		panic("invalid column index")
 | ||
| 	}
 | ||
| 
 | ||
| 	for i := range v {
 | ||
| 		v[i] = 0
 | ||
| 	}
 | ||
| 	if j == n-1 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	s := floats.Norm(col[j:], 2)
 | ||
| 	if s == 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	v[j] = col[j] + math.Copysign(s, col[j])
 | ||
| 	copy(v[j+1:], col[j+1:])
 | ||
| 	s = floats.Norm(v[j:], 2)
 | ||
| 	floats.Scale(1/s, v[j:])
 | ||
| }
 | ||
| 
 | ||
| // applyReflector computes Q*H where H is a Householder matrix represented by
 | ||
| // the Householder reflector v.
 | ||
| func applyReflector(qh blas64.General, q blas64.General, v []float64) {
 | ||
| 	n := len(v)
 | ||
| 	if qh.Rows != n || qh.Cols != n {
 | ||
| 		panic("bad size of qh")
 | ||
| 	}
 | ||
| 	if q.Rows != n || q.Cols != n {
 | ||
| 		panic("bad size of q")
 | ||
| 	}
 | ||
| 	qv := make([]float64, n)
 | ||
| 	blas64.Gemv(blas.NoTrans, 1, q, blas64.Vector{Data: v, Inc: 1}, 0, blas64.Vector{Data: qv, Inc: 1})
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			qh.Data[i*qh.Stride+j] = q.Data[i*q.Stride+j]
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			qh.Data[i*qh.Stride+j] -= 2 * qv[i] * v[j]
 | ||
| 		}
 | ||
| 	}
 | ||
| 	var norm2 float64
 | ||
| 	for _, vi := range v {
 | ||
| 		norm2 += vi * vi
 | ||
| 	}
 | ||
| 	norm2inv := 1 / norm2
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			qh.Data[i*qh.Stride+j] *= norm2inv
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func dlattb(kind int, uplo blas.Uplo, trans blas.Transpose, n, kd int, ab []float64, ldab int, rnd *rand.Rand) (diag blas.Diag, b []float64) {
 | ||
| 	switch {
 | ||
| 	case kind < 1 || 18 < kind:
 | ||
| 		panic("bad matrix kind")
 | ||
| 	case (6 <= kind && kind <= 9) || kind == 17:
 | ||
| 		diag = blas.Unit
 | ||
| 	default:
 | ||
| 		diag = blas.NonUnit
 | ||
| 	}
 | ||
| 
 | ||
| 	if n == 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	const (
 | ||
| 		unfl   = dlamchS
 | ||
| 		ulp    = dlamchE * dlamchB
 | ||
| 		smlnum = unfl
 | ||
| 		bignum = (1 - ulp) / smlnum
 | ||
| 
 | ||
| 		eps   = dlamchP
 | ||
| 		small = 0.25 * (dlamchS / eps)
 | ||
| 		large = 1 / small
 | ||
| 		badc2 = 0.1 / eps
 | ||
| 	)
 | ||
| 	badc1 := math.Sqrt(badc2)
 | ||
| 
 | ||
| 	var cndnum float64
 | ||
| 	switch {
 | ||
| 	case kind == 2 || kind == 8:
 | ||
| 		cndnum = badc1
 | ||
| 	case kind == 3 || kind == 9:
 | ||
| 		cndnum = badc2
 | ||
| 	default:
 | ||
| 		cndnum = 2
 | ||
| 	}
 | ||
| 
 | ||
| 	uniformM11 := func() float64 {
 | ||
| 		return 2*rnd.Float64() - 1
 | ||
| 	}
 | ||
| 
 | ||
| 	// Allocate the right-hand side and fill it with random numbers.
 | ||
| 	// The pathological matrix types below overwrite it with their
 | ||
| 	// custom vector.
 | ||
| 	b = make([]float64, n)
 | ||
| 	for i := range b {
 | ||
| 		b[i] = uniformM11()
 | ||
| 	}
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 	switch kind {
 | ||
| 	default:
 | ||
| 		panic("test matrix type not implemented")
 | ||
| 
 | ||
| 	case 1, 2, 3, 4, 5:
 | ||
| 		// Non-unit triangular matrix
 | ||
| 		// TODO(vladimir-ch)
 | ||
| 		var kl, ku int
 | ||
| 		switch uplo {
 | ||
| 		case blas.Upper:
 | ||
| 			ku = kd
 | ||
| 			kl = 0
 | ||
| 			// IOFF = 1 + MAX( 0, KD-N+1 )
 | ||
| 			// PACKIT = 'Q'
 | ||
| 			// 'Q' => store the upper triangle in band storage scheme
 | ||
| 			//        (only if matrix symmetric or upper triangular)
 | ||
| 		case blas.Lower:
 | ||
| 			ku = 0
 | ||
| 			kl = kd
 | ||
| 			// IOFF = 1
 | ||
| 			// PACKIT = 'B'
 | ||
| 			// 'B' => store the lower triangle in band storage scheme
 | ||
| 			//        (only if matrix symmetric or lower triangular)
 | ||
| 		}
 | ||
| 		anorm := 1.0
 | ||
| 		switch kind {
 | ||
| 		case 4:
 | ||
| 			anorm = small
 | ||
| 		case 5:
 | ||
| 			anorm = large
 | ||
| 		}
 | ||
| 		_, _, _ = kl, ku, anorm
 | ||
| 		// // DIST = 'S' // UNIFORM(-1, 1)
 | ||
| 		// // MODE = 3   // MODE = 3 sets D(I)=CNDNUM**(-(I-1)/(N-1))
 | ||
| 		// // TYPE = 'N' // If TYPE='N', the generated matrix is nonsymmetric
 | ||
| 		// CALL DLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
 | ||
| 		// $            KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK, INFO )
 | ||
| 		panic("test matrix type not implemented")
 | ||
| 
 | ||
| 	case 6:
 | ||
| 		// Matrix is the identity.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				// Fill the diagonal with non-unit numbers.
 | ||
| 				ab[i*ldab] = float64(i + 2)
 | ||
| 				for j := 1; j < min(n-i, kd+1); j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd; j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 				// Fill the diagonal with non-unit numbers.
 | ||
| 				ab[i*ldab+kd] = float64(i + 2)
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 	case 7, 8, 9:
 | ||
| 		// Non-trivial unit triangular matrix
 | ||
| 		//
 | ||
| 		// A unit triangular matrix T with condition cndnum is formed.
 | ||
| 		// In this version, T only has bandwidth 2, the rest of it is
 | ||
| 		// zero.
 | ||
| 
 | ||
| 		tnorm := math.Sqrt(cndnum)
 | ||
| 
 | ||
| 		// Initialize AB to zero.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				// Fill the diagonal with non-unit numbers.
 | ||
| 				ab[i*ldab] = float64(i + 2)
 | ||
| 				for j := 1; j < min(n-i, kd+1); j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd; j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 				// Fill the diagonal with non-unit numbers.
 | ||
| 				ab[i*ldab+kd] = float64(i + 2)
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		switch kd {
 | ||
| 		case 0:
 | ||
| 			// Unit diagonal matrix, nothing else to do.
 | ||
| 		case 1:
 | ||
| 			// Special case: T is tridiagonal. Set every other
 | ||
| 			// off-diagonal so that the matrix has norm tnorm+1.
 | ||
| 			if n > 1 {
 | ||
| 				if uplo == blas.Upper {
 | ||
| 					ab[1] = math.Copysign(tnorm, uniformM11())
 | ||
| 					for i := 2; i < n-1; i += 2 {
 | ||
| 						ab[i*ldab+1] = tnorm * uniformM11()
 | ||
| 					}
 | ||
| 				} else {
 | ||
| 					ab[ldab] = math.Copysign(tnorm, uniformM11())
 | ||
| 					for i := 3; i < n; i += 2 {
 | ||
| 						ab[i*ldab] = tnorm * uniformM11()
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		default:
 | ||
| 			// Form a unit triangular matrix T with condition cndnum. T is given
 | ||
| 			// by
 | ||
| 			//      | 1   +   *                      |
 | ||
| 			//      |     1   +                      |
 | ||
| 			//  T = |         1   +   *              |
 | ||
| 			//      |             1   +              |
 | ||
| 			//      |                 1   +   *      |
 | ||
| 			//      |                     1   +      |
 | ||
| 			//      |                          . . . |
 | ||
| 			// Each element marked with a '*' is formed by taking the product of
 | ||
| 			// the adjacent elements marked with '+'. The '*'s can be chosen
 | ||
| 			// freely, and the '+'s are chosen so that the inverse of T will
 | ||
| 			// have elements of the same magnitude as T.
 | ||
| 			work1 := make([]float64, n)
 | ||
| 			work2 := make([]float64, n)
 | ||
| 			star1 := math.Copysign(tnorm, uniformM11())
 | ||
| 			sfac := math.Sqrt(tnorm)
 | ||
| 			plus1 := math.Copysign(sfac, uniformM11())
 | ||
| 			for i := 0; i < n; i += 2 {
 | ||
| 				work1[i] = plus1
 | ||
| 				work2[i] = star1
 | ||
| 				if i+1 == n {
 | ||
| 					continue
 | ||
| 				}
 | ||
| 				plus2 := star1 / plus1
 | ||
| 				work1[i+1] = plus2
 | ||
| 				plus1 = star1 / plus2
 | ||
| 				// Generate a new *-value with norm between sqrt(tnorm)
 | ||
| 				// and tnorm.
 | ||
| 				rexp := uniformM11()
 | ||
| 				if rexp < 0 {
 | ||
| 					star1 = -math.Pow(sfac, 1-rexp)
 | ||
| 				} else {
 | ||
| 					star1 = math.Pow(sfac, 1+rexp)
 | ||
| 				}
 | ||
| 			}
 | ||
| 			// Copy the diagonal to AB.
 | ||
| 			if uplo == blas.Upper {
 | ||
| 				bi.Dcopy(n-1, work1, 1, ab[1:], ldab)
 | ||
| 				if n > 2 {
 | ||
| 					bi.Dcopy(n-2, work2, 1, ab[2:], ldab)
 | ||
| 				}
 | ||
| 			} else {
 | ||
| 				bi.Dcopy(n-1, work1, 1, ab[ldab+kd-1:], ldab)
 | ||
| 				if n > 2 {
 | ||
| 					bi.Dcopy(n-2, work2, 1, ab[2*ldab+kd-2:], ldab)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 	// Pathological test cases 10-18: these triangular matrices are badly
 | ||
| 	// scaled or badly conditioned, so when used in solving a triangular
 | ||
| 	// system they may cause overflow in the solution vector.
 | ||
| 
 | ||
| 	case 10:
 | ||
| 		// Generate a triangular matrix with elements between -1 and 1.
 | ||
| 		// Give the diagonal norm 2 to make it well-conditioned.
 | ||
| 		// Make the right hand side large so that it requires scaling.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j < min(n-j, kd+1); j++ {
 | ||
| 					ab[i*ldab+j] = uniformM11()
 | ||
| 				}
 | ||
| 				ab[i*ldab] = math.Copysign(2, ab[i*ldab])
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd+1; j++ {
 | ||
| 					ab[i*ldab+j] = uniformM11()
 | ||
| 				}
 | ||
| 				ab[i*ldab+kd] = math.Copysign(2, ab[i*ldab+kd])
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Set the right hand side so that the largest value is bignum.
 | ||
| 		bnorm := math.Abs(b[bi.Idamax(n, b, 1)])
 | ||
| 		bscal := bignum / math.Max(1, bnorm)
 | ||
| 		bi.Dscal(n, bscal, b, 1)
 | ||
| 
 | ||
| 	case 11:
 | ||
| 		// Make the first diagonal element in the solve small to cause
 | ||
| 		// immediate overflow when dividing by T[j,j].
 | ||
| 		// The offdiagonal elements are small (cnorm[j] < 1).
 | ||
| 		tscal := 1 / float64(kd+1)
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(n-i, kd+1)
 | ||
| 				arow := ab[i*ldab : i*ldab+jlen]
 | ||
| 				dlarnv(arow, 2, rnd)
 | ||
| 				if jlen > 1 {
 | ||
| 					bi.Dscal(jlen-1, tscal, arow[1:], 1)
 | ||
| 				}
 | ||
| 				ab[i*ldab] = math.Copysign(1, ab[i*ldab])
 | ||
| 			}
 | ||
| 			ab[(n-1)*ldab] *= smlnum
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(i+1, kd+1)
 | ||
| 				arow := ab[i*ldab+kd+1-jlen : i*ldab+kd+1]
 | ||
| 				dlarnv(arow, 2, rnd)
 | ||
| 				if jlen > 1 {
 | ||
| 					bi.Dscal(jlen-1, tscal, arow[:jlen-1], 1)
 | ||
| 				}
 | ||
| 				ab[i*ldab+kd] = math.Copysign(1, ab[i*ldab+kd])
 | ||
| 			}
 | ||
| 			ab[kd] *= smlnum
 | ||
| 		}
 | ||
| 
 | ||
| 	case 12:
 | ||
| 		// Make the first diagonal element in the solve small to cause
 | ||
| 		// immediate overflow when dividing by T[j,j].
 | ||
| 		// The offdiagonal elements are O(1) (cnorm[j] > 1).
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(n-i, kd+1)
 | ||
| 				arow := ab[i*ldab : i*ldab+jlen]
 | ||
| 				dlarnv(arow, 2, rnd)
 | ||
| 				ab[i*ldab] = math.Copysign(1, ab[i*ldab])
 | ||
| 			}
 | ||
| 			ab[(n-1)*ldab] *= smlnum
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(i+1, kd+1)
 | ||
| 				arow := ab[i*ldab+kd+1-jlen : i*ldab+kd+1]
 | ||
| 				dlarnv(arow, 2, rnd)
 | ||
| 				ab[i*ldab+kd] = math.Copysign(1, ab[i*ldab+kd])
 | ||
| 			}
 | ||
| 			ab[kd] *= smlnum
 | ||
| 		}
 | ||
| 
 | ||
| 	case 13:
 | ||
| 		// T is diagonal with small numbers on the diagonal to make the growth
 | ||
| 		// factor underflow, but a small right hand side chosen so that the
 | ||
| 		// solution does not overflow.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			icount := 1
 | ||
| 			for i := n - 1; i >= 0; i-- {
 | ||
| 				if icount <= 2 {
 | ||
| 					ab[i*ldab] = smlnum
 | ||
| 				} else {
 | ||
| 					ab[i*ldab] = 1
 | ||
| 				}
 | ||
| 				for j := 1; j < min(n-i, kd+1); j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 				icount++
 | ||
| 				if icount > 4 {
 | ||
| 					icount = 1
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			icount := 1
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd; j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 				if icount <= 2 {
 | ||
| 					ab[i*ldab+kd] = smlnum
 | ||
| 				} else {
 | ||
| 					ab[i*ldab+kd] = 1
 | ||
| 				}
 | ||
| 				icount++
 | ||
| 				if icount > 4 {
 | ||
| 					icount = 1
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Set the right hand side alternately zero and small.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			b[0] = 0
 | ||
| 			for i := n - 1; i > 1; i -= 2 {
 | ||
| 				b[i] = 0
 | ||
| 				b[i-1] = smlnum
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			b[n-1] = 0
 | ||
| 			for i := 0; i < n-1; i += 2 {
 | ||
| 				b[i] = 0
 | ||
| 				b[i+1] = smlnum
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 	case 14:
 | ||
| 		// Make the diagonal elements small to cause gradual overflow when
 | ||
| 		// dividing by T[j,j]. To control the amount of scaling needed, the
 | ||
| 		// matrix is bidiagonal.
 | ||
| 		tscal := math.Pow(smlnum, 1/float64(kd+1))
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				ab[i*ldab] = tscal
 | ||
| 				if i < n-1 && kd > 0 {
 | ||
| 					ab[i*ldab+1] = -1
 | ||
| 				}
 | ||
| 				for j := 2; j < min(n-i, kd+1); j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 			b[n-1] = 1
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd-1; j++ {
 | ||
| 					ab[i*ldab+j] = 0
 | ||
| 				}
 | ||
| 				if i > 0 && kd > 0 {
 | ||
| 					ab[i*ldab+kd-1] = -1
 | ||
| 				}
 | ||
| 				ab[i*ldab+kd] = tscal
 | ||
| 			}
 | ||
| 			b[0] = 1
 | ||
| 		}
 | ||
| 
 | ||
| 	case 15:
 | ||
| 		// One zero diagonal element.
 | ||
| 		iy := n / 2
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(n-i, kd+1)
 | ||
| 				dlarnv(ab[i*ldab:i*ldab+jlen], 2, rnd)
 | ||
| 				if i != iy {
 | ||
| 					ab[i*ldab] = math.Copysign(2, ab[i*ldab])
 | ||
| 				} else {
 | ||
| 					ab[i*ldab] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(i+1, kd+1)
 | ||
| 				dlarnv(ab[i*ldab+kd+1-jlen:i*ldab+kd+1], 2, rnd)
 | ||
| 				if i != iy {
 | ||
| 					ab[i*ldab+kd] = math.Copysign(2, ab[i*ldab+kd])
 | ||
| 				} else {
 | ||
| 					ab[i*ldab+kd] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		bi.Dscal(n, 2, b, 1)
 | ||
| 
 | ||
| 		// case 16:
 | ||
| 		// TODO(vladimir-ch)
 | ||
| 		// Make the off-diagonal elements large to cause overflow when adding a
 | ||
| 		// column of T. In the non-transposed case, the matrix is constructed to
 | ||
| 		// cause overflow when adding a column in every other step.
 | ||
| 
 | ||
| 		// Initialize the matrix to zero.
 | ||
| 		// if uplo == blas.Upper {
 | ||
| 		// 	for i := 0; i < n; i++ {
 | ||
| 		// 		for j := 0; j < min(n-i, kd+1); j++ {
 | ||
| 		// 			ab[i*ldab+j] = 0
 | ||
| 		// 		}
 | ||
| 		// 	}
 | ||
| 		// } else {
 | ||
| 		// 	for i := 0; i < n; i++ {
 | ||
| 		// 		for j := max(0, kd-i); j < kd+1; j++ {
 | ||
| 		// 			ab[i*ldab+j] = 0
 | ||
| 		// 		}
 | ||
| 		// 	}
 | ||
| 		// }
 | ||
| 
 | ||
| 		// const tscal = (1 - ulp) / (unfl / ulp)
 | ||
| 		// texp := 1.0
 | ||
| 		// if kd > 0 {
 | ||
| 		// 	if uplo == blas.Upper {
 | ||
| 		// 		for j := n - 1; j >= 0; j -= kd {
 | ||
| 		// 		}
 | ||
| 		// 	} else {
 | ||
| 		// 		for j := 0; j < n; j += kd {
 | ||
| 		// 		}
 | ||
| 		// 	}
 | ||
| 		// } else {
 | ||
| 		// 	// Diagonal matrix.
 | ||
| 		// 	for i := 0; i < n; i++ {
 | ||
| 		// 		ab[i*ldab] = 1
 | ||
| 		// 		b[i] = float64(i + 1)
 | ||
| 		// 	}
 | ||
| 		// }
 | ||
| 
 | ||
| 	case 17:
 | ||
| 		// Generate a unit triangular matrix with elements between -1 and 1, and
 | ||
| 		// make the right hand side large so that it requires scaling.
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				ab[i*ldab] = float64(i + 2)
 | ||
| 				jlen := min(n-i-1, kd)
 | ||
| 				if jlen > 0 {
 | ||
| 					dlarnv(ab[i*ldab+1:i*ldab+1+jlen], 2, rnd)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				jlen := min(i, kd)
 | ||
| 				if jlen > 0 {
 | ||
| 					dlarnv(ab[i*ldab+kd-jlen:i*ldab+kd], 2, rnd)
 | ||
| 				}
 | ||
| 				ab[i*ldab+kd] = float64(i + 2)
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Set the right hand side so that the largest value is bignum.
 | ||
| 		bnorm := math.Abs(b[bi.Idamax(n, b, 1)])
 | ||
| 		bscal := bignum / math.Max(1, bnorm)
 | ||
| 		bi.Dscal(n, bscal, b, 1)
 | ||
| 
 | ||
| 	case 18:
 | ||
| 		// Generate a triangular matrix with elements between bignum/kd and
 | ||
| 		// bignum so that at least one of the column norms will exceed bignum.
 | ||
| 		tleft := bignum / math.Max(1, float64(kd))
 | ||
| 		// The reference LAPACK has
 | ||
| 		//  tscal := bignum * (float64(kd) / float64(kd+1))
 | ||
| 		// but this causes overflow when computing cnorm in Dlatbs. Our choice
 | ||
| 		// is more conservative but increases coverage in the same way as the
 | ||
| 		// LAPACK version.
 | ||
| 		tscal := bignum / math.Max(1, float64(kd))
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := 0; j < min(n-i, kd+1); j++ {
 | ||
| 					r := uniformM11()
 | ||
| 					ab[i*ldab+j] = math.Copysign(tleft, r) + tscal*r
 | ||
| 				}
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for i := 0; i < n; i++ {
 | ||
| 				for j := max(0, kd-i); j < kd+1; j++ {
 | ||
| 					r := uniformM11()
 | ||
| 					ab[i*ldab+j] = math.Copysign(tleft, r) + tscal*r
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		bi.Dscal(n, 2, b, 1)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Flip the matrix if the transpose will be used.
 | ||
| 	if trans != blas.NoTrans {
 | ||
| 		if uplo == blas.Upper {
 | ||
| 			for j := 0; j < n/2; j++ {
 | ||
| 				jlen := min(n-2*j-1, kd+1)
 | ||
| 				bi.Dswap(jlen, ab[j*ldab:], 1, ab[(n-j-jlen)*ldab+jlen-1:], min(-ldab+1, -1))
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			for j := 0; j < n/2; j++ {
 | ||
| 				jlen := min(n-2*j-1, kd+1)
 | ||
| 				bi.Dswap(jlen, ab[j*ldab+kd:], max(ldab-1, 1), ab[(n-j-1)*ldab+kd+1-jlen:], -1)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return diag, b
 | ||
| }
 |