mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 02:26:59 +08:00 
			
		
		
		
	 17ea55aedb
			
		
	
	17ea55aedb
	
	
	
		
			
			Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g
Some additional manual editing of odd formatting.
		
	
		
			
				
	
	
		
			97 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2019 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package testlapack
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"testing"
 | |
| 
 | |
| 	"golang.org/x/exp/rand"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/blas"
 | |
| 	"gonum.org/v1/gonum/blas/blas64"
 | |
| 	"gonum.org/v1/gonum/floats"
 | |
| )
 | |
| 
 | |
| type Dpbtrser interface {
 | |
| 	Dpbtrs(uplo blas.Uplo, n, kd, nrhs int, ab []float64, ldab int, b []float64, ldb int)
 | |
| 
 | |
| 	Dpbtrfer
 | |
| }
 | |
| 
 | |
| // DpbtrsTest tests Dpbtrs by comparing the computed and known, generated solutions of
 | |
| // a linear system with a random symmetric positive definite band matrix.
 | |
| func DpbtrsTest(t *testing.T, impl Dpbtrser) {
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 	for _, n := range []int{0, 1, 2, 3, 4, 5, 65, 100, 129} {
 | |
| 		for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
 | |
| 			for _, nrhs := range []int{0, 1, 2, 5} {
 | |
| 				for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
 | |
| 					for _, ldab := range []int{kd + 1, kd + 1 + 3} {
 | |
| 						for _, ldb := range []int{max(1, nrhs), nrhs + 4} {
 | |
| 							dpbtrsTest(t, impl, rnd, uplo, n, kd, nrhs, ldab, ldb)
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func dpbtrsTest(t *testing.T, impl Dpbtrser, rnd *rand.Rand, uplo blas.Uplo, n, kd, nrhs int, ldab, ldb int) {
 | |
| 	const tol = 1e-12
 | |
| 
 | |
| 	name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,nrhs=%v,ldab=%v,ldb=%v", string(uplo), n, kd, nrhs, ldab, ldb)
 | |
| 
 | |
| 	// Generate a random symmetric positive definite band matrix.
 | |
| 	ab := randSymBand(uplo, n, kd, ldab, rnd)
 | |
| 
 | |
| 	// Compute the Cholesky decomposition of A.
 | |
| 	abFac := make([]float64, len(ab))
 | |
| 	copy(abFac, ab)
 | |
| 	ok := impl.Dpbtrf(uplo, n, kd, abFac, ldab)
 | |
| 	if !ok {
 | |
| 		t.Fatalf("%v: bad test matrix, Dpbtrs failed", name)
 | |
| 	}
 | |
| 	abFacCopy := make([]float64, len(abFac))
 | |
| 	copy(abFacCopy, abFac)
 | |
| 
 | |
| 	// Generate a random solution.
 | |
| 	xWant := make([]float64, n*ldb)
 | |
| 	for i := range xWant {
 | |
| 		xWant[i] = rnd.NormFloat64()
 | |
| 	}
 | |
| 
 | |
| 	// Compute the corresponding right-hand side.
 | |
| 	bi := blas64.Implementation()
 | |
| 	b := make([]float64, len(xWant))
 | |
| 	if n > 0 {
 | |
| 		for j := 0; j < nrhs; j++ {
 | |
| 			bi.Dsbmv(uplo, n, kd, 1, ab, ldab, xWant[j:], ldb, 0, b[j:], ldb)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Solve  Uᵀ * U * X = B  or  L * Lᵀ * X = B.
 | |
| 	impl.Dpbtrs(uplo, n, kd, nrhs, abFac, ldab, b, ldb)
 | |
| 	xGot := b
 | |
| 
 | |
| 	// Check that the Cholesky factorization matrix has not been modified.
 | |
| 	if !floats.Equal(abFac, abFacCopy) {
 | |
| 		t.Errorf("%v: unexpected modification of ab", name)
 | |
| 	}
 | |
| 
 | |
| 	// Compute and check the max-norm difference between the computed and generated solutions.
 | |
| 	var diff float64
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		for j := 0; j < nrhs; j++ {
 | |
| 			diff = math.Max(diff, math.Abs(xWant[i*ldb+j]-xGot[i*ldb+j]))
 | |
| 		}
 | |
| 	}
 | |
| 	if diff > tol {
 | |
| 		t.Errorf("%v: unexpected result, diff=%v", name, diff)
 | |
| 	}
 | |
| }
 |