mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 02:26:59 +08:00 
			
		
		
		
	 17ea55aedb
			
		
	
	17ea55aedb
	
	
	
		
			
			Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g
Some additional manual editing of odd formatting.
		
	
		
			
				
	
	
		
			101 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2019 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package testlapack
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"testing"
 | |
| 
 | |
| 	"golang.org/x/exp/rand"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/blas"
 | |
| 	"gonum.org/v1/gonum/blas/blas64"
 | |
| )
 | |
| 
 | |
| type Dpbtrfer interface {
 | |
| 	Dpbtrf(uplo blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool)
 | |
| }
 | |
| 
 | |
| // DpbtrfTest tests a band Cholesky factorization on random symmetric positive definite
 | |
| // band matrices by checking that the Cholesky factors multiply back to the original matrix.
 | |
| func DpbtrfTest(t *testing.T, impl Dpbtrfer) {
 | |
| 	// TODO(vladimir-ch): include expected-failure test case.
 | |
| 
 | |
| 	// With the current implementation of Ilaenv the blocked code path is taken if kd > 64.
 | |
| 	// Unfortunately, with the block size nb=32 this also means that in Dpbtrf
 | |
| 	// it never happens that i2 <= 0 and the state coverage (unlike code coverage) is not complete.
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 	for _, n := range []int{0, 1, 2, 3, 4, 5, 64, 65, 66, 91, 96, 97, 101, 128, 130} {
 | |
| 		for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
 | |
| 			for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
 | |
| 				for _, ldab := range []int{kd + 1, kd + 1 + 7} {
 | |
| 					dpbtrfTest(t, impl, uplo, n, kd, ldab, rnd)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func dpbtrfTest(t *testing.T, impl Dpbtrfer, uplo blas.Uplo, n, kd int, ldab int, rnd *rand.Rand) {
 | |
| 	const tol = 1e-12
 | |
| 
 | |
| 	name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,ldab=%v", string(uplo), n, kd, ldab)
 | |
| 
 | |
| 	// Generate a random symmetric positive definite band matrix.
 | |
| 	ab := randSymBand(uplo, n, kd, ldab, rnd)
 | |
| 
 | |
| 	// Compute the Cholesky decomposition of A.
 | |
| 	abFac := make([]float64, len(ab))
 | |
| 	copy(abFac, ab)
 | |
| 	ok := impl.Dpbtrf(uplo, n, kd, abFac, ldab)
 | |
| 	if !ok {
 | |
| 		t.Fatalf("%v: bad test matrix, Dpbtrf failed", name)
 | |
| 	}
 | |
| 
 | |
| 	// Reconstruct an symmetric band matrix from the Uᵀ*U or L*Lᵀ factorization, overwriting abFac.
 | |
| 	dsbmm(uplo, n, kd, abFac, ldab)
 | |
| 
 | |
| 	// Compute and check the max-norm distance between the reconstructed and original matrix A.
 | |
| 	dist := distSymBand(uplo, n, kd, abFac, ldab, ab, ldab)
 | |
| 	if dist > tol*float64(n) {
 | |
| 		t.Errorf("%v: unexpected result, diff=%v", name, dist)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // dsbmm computes a symmetric band matrix A
 | |
| //  A = Uᵀ*U  if uplo == blas.Upper,
 | |
| //  A = L*Lᵀ  if uplo == blas.Lower,
 | |
| // where U and L is an upper, respectively lower, triangular band matrix
 | |
| // stored on entry in ab. The result is stored in-place into ab.
 | |
| func dsbmm(uplo blas.Uplo, n, kd int, ab []float64, ldab int) {
 | |
| 	bi := blas64.Implementation()
 | |
| 	switch uplo {
 | |
| 	case blas.Upper:
 | |
| 		// Compute the product Uᵀ * U.
 | |
| 		for k := n - 1; k >= 0; k-- {
 | |
| 			klen := min(kd, n-k-1) // Number of stored off-diagonal elements in the row
 | |
| 			// Add a multiple of row k of the factor U to each of rows k+1 through n.
 | |
| 			if klen > 0 {
 | |
| 				bi.Dsyr(blas.Upper, klen, 1, ab[k*ldab+1:], 1, ab[(k+1)*ldab:], ldab-1)
 | |
| 			}
 | |
| 			// Scale row k by the diagonal element.
 | |
| 			bi.Dscal(klen+1, ab[k*ldab], ab[k*ldab:], 1)
 | |
| 		}
 | |
| 	case blas.Lower:
 | |
| 		// Compute the product L * Lᵀ.
 | |
| 		for k := n - 1; k >= 0; k-- {
 | |
| 			kc := max(0, kd-k) // Index of the first valid element in the row
 | |
| 			klen := kd - kc    // Number of stored off-diagonal elements in the row
 | |
| 			// Compute the diagonal [k,k] element.
 | |
| 			ab[k*ldab+kd] = bi.Ddot(klen+1, ab[k*ldab+kc:], 1, ab[k*ldab+kc:], 1)
 | |
| 			// Compute the rest of column k.
 | |
| 			if klen > 0 {
 | |
| 				bi.Dtrmv(blas.Lower, blas.NoTrans, blas.NonUnit, klen,
 | |
| 					ab[(k-klen)*ldab+kd:], ldab-1, ab[k*ldab+kc:], 1)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 |