mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package testlapack
 | ||
| 
 | ||
| import (
 | ||
| 	"fmt"
 | ||
| 	"testing"
 | ||
| 
 | ||
| 	"golang.org/x/exp/rand"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/floats"
 | ||
| )
 | ||
| 
 | ||
| type Dorgtrer interface {
 | ||
| 	Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int)
 | ||
| 	Dsytrder
 | ||
| }
 | ||
| 
 | ||
| func DorgtrTest(t *testing.T, impl Dorgtrer) {
 | ||
| 	const tol = 1e-14
 | ||
| 
 | ||
| 	rnd := rand.New(rand.NewSource(1))
 | ||
| 	for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
 | ||
| 		for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
 | ||
| 			for _, test := range []struct {
 | ||
| 				n, lda int
 | ||
| 			}{
 | ||
| 				{1, 0},
 | ||
| 				{2, 0},
 | ||
| 				{3, 0},
 | ||
| 				{6, 0},
 | ||
| 				{33, 0},
 | ||
| 				{100, 0},
 | ||
| 
 | ||
| 				{1, 3},
 | ||
| 				{2, 5},
 | ||
| 				{3, 7},
 | ||
| 				{6, 10},
 | ||
| 				{33, 50},
 | ||
| 				{100, 120},
 | ||
| 			} {
 | ||
| 				n := test.n
 | ||
| 				lda := test.lda
 | ||
| 				if lda == 0 {
 | ||
| 					lda = n
 | ||
| 				}
 | ||
| 				// Allocate n×n matrix A and fill it with random numbers.
 | ||
| 				a := make([]float64, n*lda)
 | ||
| 				for i := range a {
 | ||
| 					a[i] = rnd.NormFloat64()
 | ||
| 				}
 | ||
| 				aCopy := make([]float64, len(a))
 | ||
| 				copy(aCopy, a)
 | ||
| 
 | ||
| 				// Allocate slices for the main diagonal and the
 | ||
| 				// first off-diagonal of the tri-diagonal matrix.
 | ||
| 				d := make([]float64, n)
 | ||
| 				e := make([]float64, n-1)
 | ||
| 				// Allocate slice for elementary reflector scales.
 | ||
| 				tau := make([]float64, n-1)
 | ||
| 
 | ||
| 				// Compute optimum workspace size for Dorgtr call.
 | ||
| 				work := make([]float64, 1)
 | ||
| 				impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, -1)
 | ||
| 				work = make([]float64, int(work[0]))
 | ||
| 
 | ||
| 				// Compute elementary reflectors that reduce the
 | ||
| 				// symmetric matrix defined by the uplo triangle
 | ||
| 				// of A to a tridiagonal matrix.
 | ||
| 				impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, len(work))
 | ||
| 
 | ||
| 				// Compute workspace size for Dorgtr call.
 | ||
| 				var lwork int
 | ||
| 				switch wl {
 | ||
| 				case minimumWork:
 | ||
| 					lwork = max(1, n-1)
 | ||
| 				case mediumWork:
 | ||
| 					work := make([]float64, 1)
 | ||
| 					impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
 | ||
| 					lwork = (int(work[0]) + n - 1) / 2
 | ||
| 					lwork = max(1, lwork)
 | ||
| 				case optimumWork:
 | ||
| 					work := make([]float64, 1)
 | ||
| 					impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
 | ||
| 					lwork = int(work[0])
 | ||
| 				}
 | ||
| 				work = nanSlice(lwork)
 | ||
| 
 | ||
| 				// Generate an orthogonal matrix Q that reduces
 | ||
| 				// the uplo triangle of A to a tridiagonal matrix.
 | ||
| 				impl.Dorgtr(uplo, n, a, lda, tau, work, len(work))
 | ||
| 				q := blas64.General{
 | ||
| 					Rows:   n,
 | ||
| 					Cols:   n,
 | ||
| 					Stride: lda,
 | ||
| 					Data:   a,
 | ||
| 				}
 | ||
| 
 | ||
| 				name := fmt.Sprintf("uplo=%c,n=%v,lda=%v,work=%v", uplo, n, lda, wl)
 | ||
| 
 | ||
| 				if resid := residualOrthogonal(q, false); resid > tol*float64(n) {
 | ||
| 					t.Errorf("Case %v: Q is not orthogonal; resid=%v, want<=%v", name, resid, tol*float64(n))
 | ||
| 				}
 | ||
| 
 | ||
| 				// Create the tridiagonal matrix explicitly in
 | ||
| 				// dense representation from the diagonals d and e.
 | ||
| 				tri := blas64.General{
 | ||
| 					Rows:   n,
 | ||
| 					Cols:   n,
 | ||
| 					Stride: n,
 | ||
| 					Data:   make([]float64, n*n),
 | ||
| 				}
 | ||
| 				for i := 0; i < n; i++ {
 | ||
| 					tri.Data[i*tri.Stride+i] = d[i]
 | ||
| 					if i != n-1 {
 | ||
| 						tri.Data[i*tri.Stride+i+1] = e[i]
 | ||
| 						tri.Data[(i+1)*tri.Stride+i] = e[i]
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				// Create the symmetric matrix A from the uplo
 | ||
| 				// triangle of aCopy, storing it explicitly in dense form.
 | ||
| 				aMat := blas64.General{
 | ||
| 					Rows:   n,
 | ||
| 					Cols:   n,
 | ||
| 					Stride: n,
 | ||
| 					Data:   make([]float64, n*n),
 | ||
| 				}
 | ||
| 				if uplo == blas.Upper {
 | ||
| 					for i := 0; i < n; i++ {
 | ||
| 						for j := i; j < n; j++ {
 | ||
| 							v := aCopy[i*lda+j]
 | ||
| 							aMat.Data[i*aMat.Stride+j] = v
 | ||
| 							aMat.Data[j*aMat.Stride+i] = v
 | ||
| 						}
 | ||
| 					}
 | ||
| 				} else {
 | ||
| 					for i := 0; i < n; i++ {
 | ||
| 						for j := 0; j <= i; j++ {
 | ||
| 							v := aCopy[i*lda+j]
 | ||
| 							aMat.Data[i*aMat.Stride+j] = v
 | ||
| 							aMat.Data[j*aMat.Stride+i] = v
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				// Compute Qᵀ * A * Q and store the result in ans.
 | ||
| 				tmp := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
 | ||
| 				blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aMat, q, 0, tmp)
 | ||
| 				ans := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
 | ||
| 				blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, tmp, 0, ans)
 | ||
| 
 | ||
| 				// Compare the tridiagonal matrix tri from
 | ||
| 				// Dorgtr with the explicit computation ans.
 | ||
| 				if !floats.EqualApprox(ans.Data, tri.Data, tol) {
 | ||
| 					t.Errorf("Case %v: Recombination mismatch", name)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
