mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 02:26:59 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package testlapack
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"testing"
 | |
| 
 | |
| 	"golang.org/x/exp/rand"
 | |
| )
 | |
| 
 | |
| type Dlanv2er interface {
 | |
| 	Dlanv2(a, b, c, d float64) (aa, bb, cc, dd float64, rt1r, rt1i, rt2r, rt2i float64, cs, sn float64)
 | |
| }
 | |
| 
 | |
| func Dlanv2Test(t *testing.T, impl Dlanv2er) {
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 	t.Run("UpperTriangular", func(t *testing.T) {
 | |
| 		for i := 0; i < 10; i++ {
 | |
| 			a := rnd.NormFloat64()
 | |
| 			b := rnd.NormFloat64()
 | |
| 			d := rnd.NormFloat64()
 | |
| 			dlanv2Test(t, impl, a, b, 0, d)
 | |
| 		}
 | |
| 	})
 | |
| 	t.Run("LowerTriangular", func(t *testing.T) {
 | |
| 		for i := 0; i < 10; i++ {
 | |
| 			a := rnd.NormFloat64()
 | |
| 			c := rnd.NormFloat64()
 | |
| 			d := rnd.NormFloat64()
 | |
| 			dlanv2Test(t, impl, a, 0, c, d)
 | |
| 		}
 | |
| 	})
 | |
| 	t.Run("StandardSchur", func(t *testing.T) {
 | |
| 		for i := 0; i < 10; i++ {
 | |
| 			a := rnd.NormFloat64()
 | |
| 			b := rnd.NormFloat64()
 | |
| 			c := rnd.NormFloat64()
 | |
| 			if math.Signbit(b) == math.Signbit(c) {
 | |
| 				c = -c
 | |
| 			}
 | |
| 			dlanv2Test(t, impl, a, b, c, a)
 | |
| 		}
 | |
| 	})
 | |
| 	t.Run("General", func(t *testing.T) {
 | |
| 		for i := 0; i < 100; i++ {
 | |
| 			a := rnd.NormFloat64()
 | |
| 			b := rnd.NormFloat64()
 | |
| 			c := rnd.NormFloat64()
 | |
| 			d := rnd.NormFloat64()
 | |
| 			dlanv2Test(t, impl, a, b, c, d)
 | |
| 		}
 | |
| 
 | |
| 		// https://github.com/Reference-LAPACK/lapack/issues/263
 | |
| 		dlanv2Test(t, impl, 0, 1, -1, math.Nextafter(0, 1))
 | |
| 	})
 | |
| }
 | |
| 
 | |
| func dlanv2Test(t *testing.T, impl Dlanv2er, a, b, c, d float64) {
 | |
| 	aa, bb, cc, dd, rt1r, rt1i, rt2r, rt2i, cs, sn := impl.Dlanv2(a, b, c, d)
 | |
| 
 | |
| 	mat := fmt.Sprintf("[%v %v; %v %v]", a, b, c, d)
 | |
| 	if cc == 0 {
 | |
| 		// The eigenvalues are real, so check that the imaginary parts
 | |
| 		// are zero.
 | |
| 		if rt1i != 0 || rt2i != 0 {
 | |
| 			t.Errorf("Unexpected complex eigenvalues for %v", mat)
 | |
| 		}
 | |
| 	} else {
 | |
| 		// The eigenvalues are complex, so check that documented
 | |
| 		// conditions hold.
 | |
| 		if aa != dd {
 | |
| 			t.Errorf("Diagonal elements not equal for %v: got [%v %v]", mat, aa, dd)
 | |
| 		}
 | |
| 		if bb*cc >= 0 {
 | |
| 			t.Errorf("Non-diagonal elements have the same sign for %v: got [%v %v]", mat, bb, cc)
 | |
| 		} else {
 | |
| 			// Compute the absolute value of the imaginary part.
 | |
| 			im := math.Sqrt(-bb * cc)
 | |
| 			// Check that ±im is close to one of the returned
 | |
| 			// imaginary parts.
 | |
| 			if math.Abs(rt1i-im) > 1e-14 && math.Abs(rt1i+im) > 1e-14 {
 | |
| 				t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt1i, im, -im)
 | |
| 			}
 | |
| 			if math.Abs(rt2i-im) > 1e-14 && math.Abs(rt2i+im) > 1e-14 {
 | |
| 				t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt2i, im, -im)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// Check that the returned real parts are consistent.
 | |
| 	if rt1r != aa && rt1r != dd {
 | |
| 		t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt1r, aa, dd)
 | |
| 	}
 | |
| 	if rt2r != aa && rt2r != dd {
 | |
| 		t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt2r, aa, dd)
 | |
| 	}
 | |
| 	// Check that the columns of the orthogonal matrix have unit norm.
 | |
| 	if math.Abs(math.Hypot(cs, sn)-1) > 1e-14 {
 | |
| 		t.Errorf("Unexpected unitary matrix for %v: got cs %v, sn %v", mat, cs, sn)
 | |
| 	}
 | |
| 
 | |
| 	// Re-compute the original matrix [a b; c d] from its factorization.
 | |
| 	gota := cs*(aa*cs-bb*sn) - sn*(cc*cs-dd*sn)
 | |
| 	gotb := cs*(aa*sn+bb*cs) - sn*(cc*sn+dd*cs)
 | |
| 	gotc := sn*(aa*cs-bb*sn) + cs*(cc*cs-dd*sn)
 | |
| 	gotd := sn*(aa*sn+bb*cs) + cs*(cc*sn+dd*cs)
 | |
| 	if math.Abs(gota-a) > 1e-14 ||
 | |
| 		math.Abs(gotb-b) > 1e-14 ||
 | |
| 		math.Abs(gotc-c) > 1e-14 ||
 | |
| 		math.Abs(gotd-d) > 1e-14 {
 | |
| 		t.Errorf("Unexpected factorization: got [%v %v; %v %v], want [%v %v; %v %v]", gota, gotb, gotc, gotd, a, b, c, d)
 | |
| 	}
 | |
| }
 | 
