mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 02:26:59 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			102 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package testlapack
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 	"testing"
 | ||
| 
 | ||
| 	"golang.org/x/exp/rand"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| type Dlanger interface {
 | ||
| 	Dlange(norm lapack.MatrixNorm, m, n int, a []float64, lda int, work []float64) float64
 | ||
| }
 | ||
| 
 | ||
| func DlangeTest(t *testing.T, impl Dlanger) {
 | ||
| 	rnd := rand.New(rand.NewSource(1))
 | ||
| 	for _, test := range []struct {
 | ||
| 		m, n, lda int
 | ||
| 	}{
 | ||
| 		{4, 3, 0},
 | ||
| 		{3, 4, 0},
 | ||
| 		{4, 3, 100},
 | ||
| 		{3, 4, 100},
 | ||
| 	} {
 | ||
| 		m := test.m
 | ||
| 		n := test.n
 | ||
| 		lda := test.lda
 | ||
| 		if lda == 0 {
 | ||
| 			lda = n
 | ||
| 		}
 | ||
| 		// Allocate m×n matrix A and fill it with random numbers from [-0.5, 0.5).
 | ||
| 		a := make([]float64, m*lda)
 | ||
| 		for i := range a {
 | ||
| 			a[i] = rnd.Float64() - 0.5
 | ||
| 		}
 | ||
| 		// Store a copy of A for later comparison.
 | ||
| 		aCopy := make([]float64, len(a))
 | ||
| 		copy(aCopy, a)
 | ||
| 
 | ||
| 		// Allocate workspace slice.
 | ||
| 		work := make([]float64, n)
 | ||
| 		for i := range work {
 | ||
| 			work[i] = rnd.Float64()
 | ||
| 		}
 | ||
| 
 | ||
| 		// Test various norms by comparing the result from Dlange with
 | ||
| 		// explicit calculation.
 | ||
| 
 | ||
| 		// Test MaxAbs norm.
 | ||
| 		norm := impl.Dlange(lapack.MaxAbs, m, n, a, lda, work)
 | ||
| 		var ans float64
 | ||
| 		for i := 0; i < m; i++ {
 | ||
| 			idx := blas64.Iamax(blas64.Vector{N: n, Inc: 1, Data: aCopy[i*lda:]})
 | ||
| 			ans = math.Max(ans, math.Abs(a[i*lda+idx]))
 | ||
| 		}
 | ||
| 		// Should be strictly equal because there is no floating point summation error.
 | ||
| 		if ans != norm {
 | ||
| 			t.Errorf("MaxAbs mismatch. Want %v, got %v.", ans, norm)
 | ||
| 		}
 | ||
| 
 | ||
| 		// Test MaxColumnSum norm.
 | ||
| 		norm = impl.Dlange(lapack.MaxColumnSum, m, n, a, lda, work)
 | ||
| 		ans = 0
 | ||
| 		for i := 0; i < n; i++ {
 | ||
| 			sum := blas64.Asum(blas64.Vector{N: m, Inc: lda, Data: aCopy[i:]})
 | ||
| 			ans = math.Max(ans, sum)
 | ||
| 		}
 | ||
| 		if math.Abs(norm-ans) > 1e-14 {
 | ||
| 			t.Errorf("MaxColumnSum mismatch. Want %v, got %v.", ans, norm)
 | ||
| 		}
 | ||
| 
 | ||
| 		// Test MaxRowSum norm.
 | ||
| 		norm = impl.Dlange(lapack.MaxRowSum, m, n, a, lda, work)
 | ||
| 		ans = 0
 | ||
| 		for i := 0; i < m; i++ {
 | ||
| 			sum := blas64.Asum(blas64.Vector{N: n, Inc: 1, Data: aCopy[i*lda:]})
 | ||
| 			ans = math.Max(ans, sum)
 | ||
| 		}
 | ||
| 		if math.Abs(norm-ans) > 1e-14 {
 | ||
| 			t.Errorf("MaxRowSum mismatch. Want %v, got %v.", ans, norm)
 | ||
| 		}
 | ||
| 
 | ||
| 		// Test Frobenius norm.
 | ||
| 		norm = impl.Dlange(lapack.Frobenius, m, n, a, lda, work)
 | ||
| 		ans = 0
 | ||
| 		for i := 0; i < m; i++ {
 | ||
| 			sum := blas64.Nrm2(blas64.Vector{N: n, Inc: 1, Data: aCopy[i*lda:]})
 | ||
| 			ans += sum * sum
 | ||
| 		}
 | ||
| 		ans = math.Sqrt(ans)
 | ||
| 		if math.Abs(norm-ans) > 1e-14 {
 | ||
| 			t.Errorf("Frobenius norm mismatch. Want %v, got %v.", ans, norm)
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
