mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package testlapack
 | ||
| 
 | ||
| import (
 | ||
| 	"fmt"
 | ||
| 	"testing"
 | ||
| 
 | ||
| 	"golang.org/x/exp/rand"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| type Dgeqp3er interface {
 | ||
| 	Dlapmter
 | ||
| 	Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int)
 | ||
| }
 | ||
| 
 | ||
| func Dgeqp3Test(t *testing.T, impl Dgeqp3er) {
 | ||
| 	rnd := rand.New(rand.NewSource(1))
 | ||
| 	for _, m := range []int{0, 1, 2, 3, 4, 5, 12, 23, 129} {
 | ||
| 		for _, n := range []int{0, 1, 2, 3, 4, 5, 12, 23, 129} {
 | ||
| 			for _, lda := range []int{max(1, n), n + 3} {
 | ||
| 				dgeqp3Test(t, impl, rnd, m, n, lda)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func dgeqp3Test(t *testing.T, impl Dgeqp3er, rnd *rand.Rand, m, n, lda int) {
 | ||
| 	const (
 | ||
| 		tol = 1e-14
 | ||
| 
 | ||
| 		all = iota
 | ||
| 		some
 | ||
| 		none
 | ||
| 	)
 | ||
| 	for _, free := range []int{all, some, none} {
 | ||
| 		name := fmt.Sprintf("m=%d,n=%d,lda=%d,", m, n, lda)
 | ||
| 
 | ||
| 		// Allocate m×n matrix A and fill it with random numbers.
 | ||
| 		a := randomGeneral(m, n, lda, rnd)
 | ||
| 		// Store a copy of A for later comparison.
 | ||
| 		aCopy := cloneGeneral(a)
 | ||
| 		// Allocate a slice of column pivots.
 | ||
| 		jpvt := make([]int, n)
 | ||
| 		for j := range jpvt {
 | ||
| 			switch free {
 | ||
| 			case all:
 | ||
| 				// All columns are free.
 | ||
| 				jpvt[j] = -1
 | ||
| 				name += "free=all"
 | ||
| 			case some:
 | ||
| 				// Some columns are free, some are leading columns.
 | ||
| 				jpvt[j] = rnd.Intn(2) - 1 // -1 or 0
 | ||
| 				name += "free=some"
 | ||
| 			case none:
 | ||
| 				// All columns are leading.
 | ||
| 				jpvt[j] = 0
 | ||
| 				name += "free=none"
 | ||
| 			default:
 | ||
| 				panic("bad freedom")
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Allocate a slice for scalar factors of elementary
 | ||
| 		// reflectors and fill it with random numbers. Dgeqp3
 | ||
| 		// will overwrite them with valid data.
 | ||
| 		k := min(m, n)
 | ||
| 		tau := make([]float64, k)
 | ||
| 		for i := range tau {
 | ||
| 			tau[i] = rnd.Float64()
 | ||
| 		}
 | ||
| 		// Get optimal workspace size for Dgeqp3.
 | ||
| 		work := make([]float64, 1)
 | ||
| 		impl.Dgeqp3(m, n, a.Data, a.Stride, jpvt, tau, work, -1)
 | ||
| 		lwork := int(work[0])
 | ||
| 		work = make([]float64, lwork)
 | ||
| 		for i := range work {
 | ||
| 			work[i] = rnd.Float64()
 | ||
| 		}
 | ||
| 
 | ||
| 		// Compute a QR factorization of A with column pivoting.
 | ||
| 		impl.Dgeqp3(m, n, a.Data, a.Stride, jpvt, tau, work, lwork)
 | ||
| 
 | ||
| 		// Compute Q based on the elementary reflectors stored in A.
 | ||
| 		q := constructQ("QR", m, n, a.Data, a.Stride, tau)
 | ||
| 		// Check that Q is orthogonal.
 | ||
| 		if resid := residualOrthogonal(q, false); resid > tol*float64(max(m, n)) {
 | ||
| 			t.Errorf("Case %v: Q not orthogonal; resid=%v, want<=%v", name, resid, tol*float64(max(m, n)))
 | ||
| 		}
 | ||
| 
 | ||
| 		// Copy the upper triangle of A into R.
 | ||
| 		r := zeros(m, n, lda)
 | ||
| 		for i := 0; i < m; i++ {
 | ||
| 			for j := i; j < n; j++ {
 | ||
| 				r.Data[i*r.Stride+j] = a.Data[i*a.Stride+j]
 | ||
| 			}
 | ||
| 		}
 | ||
| 		// Compute Q*R - A*P:
 | ||
| 		// 1. Rearrange the columns of A based on the permutation in jpvt.
 | ||
| 		qrap := cloneGeneral(aCopy)
 | ||
| 		impl.Dlapmt(true, qrap.Rows, qrap.Cols, qrap.Data, qrap.Stride, jpvt)
 | ||
| 		// Compute Q*R - A*P.
 | ||
| 		blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, r, -1, qrap)
 | ||
| 		// Check that |Q*R - A*P| is small.
 | ||
| 		resid := dlange(lapack.MaxColumnSum, qrap.Rows, qrap.Cols, qrap.Data, qrap.Stride)
 | ||
| 		if resid > tol*float64(max(m, n)) {
 | ||
| 			t.Errorf("Case %v: |Q*R - A*P|=%v, want<=%v", name, resid, tol*float64(max(m, n)))
 | ||
| 
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
