mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			639 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			639 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // package lp implements routines for solving linear programs.
 | |
| package lp
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/floats"
 | |
| 	"gonum.org/v1/gonum/mat"
 | |
| )
 | |
| 
 | |
| // TODO(btracey): Could have a solver structure with an abstract factorizer. With
 | |
| // this transformation the same high-level code could handle both Dense and Sparse.
 | |
| // TODO(btracey): Need to improve error handling. Only want to panic if condition number inf.
 | |
| // TODO(btracey): Performance enhancements. There are currently lots of linear
 | |
| // solves that can be improved by doing rank-one updates. For example, the swap
 | |
| // step is just a rank-one update.
 | |
| // TODO(btracey): Better handling on the linear solve errors. If the condition
 | |
| // number is not inf and the equation solved "well", should keep moving.
 | |
| 
 | |
| var (
 | |
| 	ErrBland      = errors.New("lp: bland: all replacements are negative or cause ill-conditioned ab")
 | |
| 	ErrInfeasible = errors.New("lp: problem is infeasible")
 | |
| 	ErrLinSolve   = errors.New("lp: linear solve failure")
 | |
| 	ErrUnbounded  = errors.New("lp: problem is unbounded")
 | |
| 	ErrSingular   = errors.New("lp: A is singular")
 | |
| 	ErrZeroColumn = errors.New("lp: A has a column of all zeros")
 | |
| 	ErrZeroRow    = errors.New("lp: A has a row of all zeros")
 | |
| )
 | |
| 
 | |
| const badShape = "lp: size mismatch"
 | |
| 
 | |
| // TODO(btracey): Should these tolerances be part of a settings struct?
 | |
| 
 | |
| const (
 | |
| 	// initPosTol is the tolerance on the initial condition being feasible. Strictly,
 | |
| 	// the x should be positive, but instead it must be greater than -initPosTol.
 | |
| 	initPosTol = 1e-13
 | |
| 	// blandNegTol is the tolerance on the value being greater than 0 in the bland test.
 | |
| 	blandNegTol = 1e-14
 | |
| 	// rRoundTol is the tolerance for rounding values to zero when testing if
 | |
| 	// constraints are met.
 | |
| 	rRoundTol = 1e-13
 | |
| 	// dRoundTol is the tolerance for testing if values are zero for the problem
 | |
| 	// being unbounded.
 | |
| 	dRoundTol = 1e-13
 | |
| 	// phaseIZeroTol tests if the Phase I problem returned a feasible solution.
 | |
| 	phaseIZeroTol = 1e-12
 | |
| 	// blandZeroTol is the tolerance on testing if the bland solution can move.
 | |
| 	blandZeroTol = 1e-12
 | |
| )
 | |
| 
 | |
| // Simplex solves a linear program in standard form using Danzig's Simplex
 | |
| // algorithm. The standard form of a linear program is:
 | |
| //  minimize	cᵀ x
 | |
| //  s.t. 		A*x = b
 | |
| //  			x >= 0 .
 | |
| // The input tol sets how close to the optimal solution is found (specifically,
 | |
| // when the maximal reduced cost is below tol). An error will be returned if the
 | |
| // problem is infeasible or unbounded. In rare cases, numeric errors can cause
 | |
| // the Simplex to fail. In this case, an error will be returned along with the
 | |
| // most recently found feasible solution.
 | |
| //
 | |
| // The Convert function can be used to transform a general LP into standard form.
 | |
| //
 | |
| // The input matrix A must have at least as many columns as rows, len(c) must
 | |
| // equal the number of columns of A, and len(b) must equal the number of rows of
 | |
| // A or Simplex will panic. A must also have full row rank and may not contain any
 | |
| // columns with all zeros, or Simplex will return an error.
 | |
| //
 | |
| // initialBasic can be used to set the initial set of indices for a feasible
 | |
| // solution to the LP. If an initial feasible solution is not known, initialBasic
 | |
| // may be nil. If initialBasic is non-nil, len(initialBasic) must equal the number
 | |
| // of rows of A and must be an actual feasible solution to the LP, otherwise
 | |
| // Simplex will panic.
 | |
| //
 | |
| // A description of the Simplex algorithm can be found in Ch. 8 of
 | |
| //  Strang, Gilbert. "Linear Algebra and Applications." Academic, New York (1976).
 | |
| // For a detailed video introduction, see lectures 11-13 of UC Math 352
 | |
| //  https://www.youtube.com/watch?v=ESzYPFkY3og&index=11&list=PLh464gFUoJWOmBYla3zbZbc4nv2AXez6X.
 | |
| func Simplex(c []float64, A mat.Matrix, b []float64, tol float64, initialBasic []int) (optF float64, optX []float64, err error) {
 | |
| 	ans, x, _, err := simplex(initialBasic, c, A, b, tol)
 | |
| 	return ans, x, err
 | |
| }
 | |
| 
 | |
| func simplex(initialBasic []int, c []float64, A mat.Matrix, b []float64, tol float64) (float64, []float64, []int, error) {
 | |
| 	err := verifyInputs(initialBasic, c, A, b)
 | |
| 	if err != nil {
 | |
| 		if err == ErrUnbounded {
 | |
| 			return math.Inf(-1), nil, nil, ErrUnbounded
 | |
| 		}
 | |
| 		return math.NaN(), nil, nil, err
 | |
| 	}
 | |
| 	m, n := A.Dims()
 | |
| 
 | |
| 	if m == n {
 | |
| 		// Problem is exactly constrained, perform a linear solve.
 | |
| 		bVec := mat.NewVecDense(len(b), b)
 | |
| 		x := make([]float64, n)
 | |
| 		xVec := mat.NewVecDense(n, x)
 | |
| 		err := xVec.SolveVec(A, bVec)
 | |
| 		if err != nil {
 | |
| 			return math.NaN(), nil, nil, ErrSingular
 | |
| 		}
 | |
| 		for _, v := range x {
 | |
| 			if v < 0 {
 | |
| 				return math.NaN(), nil, nil, ErrInfeasible
 | |
| 			}
 | |
| 		}
 | |
| 		f := floats.Dot(x, c)
 | |
| 		return f, x, nil, nil
 | |
| 	}
 | |
| 
 | |
| 	// There is at least one optimal solution to the LP which is at the intersection
 | |
| 	// to a set of constraint boundaries. For a standard form LP with m variables
 | |
| 	// and n equality constraints, at least m-n elements of x must equal zero
 | |
| 	// at optimality. The Simplex algorithm solves the standard-form LP by starting
 | |
| 	// at an initial constraint vertex and successively moving to adjacent constraint
 | |
| 	// vertices. At every vertex, the set of non-zero x values is the "basic
 | |
| 	// feasible solution". The list of non-zero x's are maintained in basicIdxs,
 | |
| 	// the respective columns of A are in ab, and the actual non-zero values of
 | |
| 	// x are in xb.
 | |
| 	//
 | |
| 	// The LP is equality constrained such that A * x = b. This can be expanded
 | |
| 	// to
 | |
| 	//  ab * xb + an * xn = b
 | |
| 	// where ab are the columns of a in the basic set, and an are all of the
 | |
| 	// other columns. Since each element of xn is zero by definition, this means
 | |
| 	// that for all feasible solutions xb = ab^-1 * b.
 | |
| 	//
 | |
| 	// Before the simplex algorithm can start, an initial feasible solution must
 | |
| 	// be found. If initialBasic is non-nil a feasible solution has been supplied.
 | |
| 	// Otherwise the "Phase I" problem must be solved to find an initial feasible
 | |
| 	// solution.
 | |
| 
 | |
| 	var basicIdxs []int // The indices of the non-zero x values.
 | |
| 	var ab *mat.Dense   // The subset of columns of A listed in basicIdxs.
 | |
| 	var xb []float64    // The non-zero elements of x. xb = ab^-1 b
 | |
| 
 | |
| 	if initialBasic != nil {
 | |
| 		// InitialBasic supplied. Panic if incorrect length or infeasible.
 | |
| 		if len(initialBasic) != m {
 | |
| 			panic("lp: incorrect number of initial vectors")
 | |
| 		}
 | |
| 		ab = mat.NewDense(m, len(initialBasic), nil)
 | |
| 		extractColumns(ab, A, initialBasic)
 | |
| 		xb = make([]float64, m)
 | |
| 		err = initializeFromBasic(xb, ab, b)
 | |
| 		if err != nil {
 | |
| 			panic(err)
 | |
| 		}
 | |
| 		basicIdxs = make([]int, len(initialBasic))
 | |
| 		copy(basicIdxs, initialBasic)
 | |
| 	} else {
 | |
| 		// No initial basis supplied. Solve the PhaseI problem.
 | |
| 		basicIdxs, ab, xb, err = findInitialBasic(A, b)
 | |
| 		if err != nil {
 | |
| 			return math.NaN(), nil, nil, err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// basicIdxs contains the indexes for an initial feasible solution,
 | |
| 	// ab contains the extracted columns of A, and xb contains the feasible
 | |
| 	// solution. All x not in the basic set are 0 by construction.
 | |
| 
 | |
| 	// nonBasicIdx is the set of nonbasic variables.
 | |
| 	nonBasicIdx := make([]int, 0, n-m)
 | |
| 	inBasic := make(map[int]struct{})
 | |
| 	for _, v := range basicIdxs {
 | |
| 		inBasic[v] = struct{}{}
 | |
| 	}
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		_, ok := inBasic[i]
 | |
| 		if !ok {
 | |
| 			nonBasicIdx = append(nonBasicIdx, i)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// cb is the subset of c for the basic variables. an and cn
 | |
| 	// are the equivalents to ab and cb but for the nonbasic variables.
 | |
| 	cb := make([]float64, len(basicIdxs))
 | |
| 	for i, idx := range basicIdxs {
 | |
| 		cb[i] = c[idx]
 | |
| 	}
 | |
| 	cn := make([]float64, len(nonBasicIdx))
 | |
| 	for i, idx := range nonBasicIdx {
 | |
| 		cn[i] = c[idx]
 | |
| 	}
 | |
| 	an := mat.NewDense(m, len(nonBasicIdx), nil)
 | |
| 	extractColumns(an, A, nonBasicIdx)
 | |
| 
 | |
| 	bVec := mat.NewVecDense(len(b), b)
 | |
| 	cbVec := mat.NewVecDense(len(cb), cb)
 | |
| 
 | |
| 	// Temporary data needed each iteration. (Described later)
 | |
| 	r := make([]float64, n-m)
 | |
| 	move := make([]float64, m)
 | |
| 
 | |
| 	// Solve the linear program starting from the initial feasible set. This is
 | |
| 	// the "Phase 2" problem.
 | |
| 	//
 | |
| 	// Algorithm:
 | |
| 	// 1) Compute the "reduced costs" for the non-basic variables. The reduced
 | |
| 	// costs are the lagrange multipliers of the constraints.
 | |
| 	// 	 r = cn - anᵀ * ab¯ᵀ * cb
 | |
| 	// 2) If all of the reduced costs are positive, no improvement is possible,
 | |
| 	// and the solution is optimal (xn can only increase because of
 | |
| 	// non-negativity constraints). Otherwise, the solution can be improved and
 | |
| 	// one element will be exchanged in the basic set.
 | |
| 	// 3) Choose the x_n with the most negative value of r. Call this value xe.
 | |
| 	// This variable will be swapped into the basic set.
 | |
| 	// 4) Increase xe until the next constraint boundary is met. This will happen
 | |
| 	// when the first element in xb becomes 0. The distance xe can increase before
 | |
| 	// a given element in xb becomes negative can be found from
 | |
| 	//	xb = Ab^-1 b - Ab^-1 An xn
 | |
| 	//     = Ab^-1 b - Ab^-1 Ae xe
 | |
| 	//     = bhat + d x_e
 | |
| 	//  xe = bhat_i / - d_i
 | |
| 	// where Ae is the column of A corresponding to xe.
 | |
| 	// The constraining basic index is the first index for which this is true,
 | |
| 	// so remove the element which is min_i (bhat_i / -d_i), assuming d_i is negative.
 | |
| 	// If no d_i is less than 0, then the problem is unbounded.
 | |
| 	// 5) If the new xe is 0 (that is, bhat_i == 0), then this location is at
 | |
| 	// the intersection of several constraints. Use the Bland rule instead
 | |
| 	// of the rule in step 4 to avoid cycling.
 | |
| 	for {
 | |
| 		// Compute reduced costs -- r = cn - anᵀ ab¯ᵀ cb
 | |
| 		var tmp mat.VecDense
 | |
| 		err = tmp.SolveVec(ab.T(), cbVec)
 | |
| 		if err != nil {
 | |
| 			break
 | |
| 		}
 | |
| 		data := make([]float64, n-m)
 | |
| 		tmp2 := mat.NewVecDense(n-m, data)
 | |
| 		tmp2.MulVec(an.T(), &tmp)
 | |
| 		floats.SubTo(r, cn, data)
 | |
| 
 | |
| 		// Replace the most negative element in the simplex. If there are no
 | |
| 		// negative entries then the optimal solution has been found.
 | |
| 		minIdx := floats.MinIdx(r)
 | |
| 		if r[minIdx] >= -tol {
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		for i, v := range r {
 | |
| 			if math.Abs(v) < rRoundTol {
 | |
| 				r[i] = 0
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Compute the moving distance.
 | |
| 		err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
 | |
| 		if err != nil {
 | |
| 			if err == ErrUnbounded {
 | |
| 				return math.Inf(-1), nil, nil, ErrUnbounded
 | |
| 			}
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		// Replace the basic index along the tightest constraint.
 | |
| 		replace := floats.MinIdx(move)
 | |
| 		if move[replace] <= 0 {
 | |
| 			replace, minIdx, err = replaceBland(A, ab, xb, basicIdxs, nonBasicIdx, r, move)
 | |
| 			if err != nil {
 | |
| 				if err == ErrUnbounded {
 | |
| 					return math.Inf(-1), nil, nil, ErrUnbounded
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Replace the constrained basicIdx with the newIdx.
 | |
| 		basicIdxs[replace], nonBasicIdx[minIdx] = nonBasicIdx[minIdx], basicIdxs[replace]
 | |
| 		cb[replace], cn[minIdx] = cn[minIdx], cb[replace]
 | |
| 		tmpCol1 := mat.Col(nil, replace, ab)
 | |
| 		tmpCol2 := mat.Col(nil, minIdx, an)
 | |
| 		ab.SetCol(replace, tmpCol2)
 | |
| 		an.SetCol(minIdx, tmpCol1)
 | |
| 
 | |
| 		// Compute the new xb.
 | |
| 		xbVec := mat.NewVecDense(len(xb), xb)
 | |
| 		err = xbVec.SolveVec(ab, bVec)
 | |
| 		if err != nil {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	// Found the optimum successfully or died trying. The basic variables get
 | |
| 	// their values, and the non-basic variables are all zero.
 | |
| 	opt := floats.Dot(cb, xb)
 | |
| 	xopt := make([]float64, n)
 | |
| 	for i, v := range basicIdxs {
 | |
| 		xopt[v] = xb[i]
 | |
| 	}
 | |
| 	return opt, xopt, basicIdxs, err
 | |
| }
 | |
| 
 | |
| // computeMove computes how far can be moved replacing each index. The results
 | |
| // are stored into move.
 | |
| func computeMove(move []float64, minIdx int, A mat.Matrix, ab *mat.Dense, xb []float64, nonBasicIdx []int) error {
 | |
| 	// Find ae.
 | |
| 	col := mat.Col(nil, nonBasicIdx[minIdx], A)
 | |
| 	aCol := mat.NewVecDense(len(col), col)
 | |
| 
 | |
| 	// d = - Ab^-1 Ae
 | |
| 	nb, _ := ab.Dims()
 | |
| 	d := make([]float64, nb)
 | |
| 	dVec := mat.NewVecDense(nb, d)
 | |
| 	err := dVec.SolveVec(ab, aCol)
 | |
| 	if err != nil {
 | |
| 		return ErrLinSolve
 | |
| 	}
 | |
| 	floats.Scale(-1, d)
 | |
| 
 | |
| 	for i, v := range d {
 | |
| 		if math.Abs(v) < dRoundTol {
 | |
| 			d[i] = 0
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// If no di < 0, then problem is unbounded.
 | |
| 	if floats.Min(d) >= 0 {
 | |
| 		return ErrUnbounded
 | |
| 	}
 | |
| 
 | |
| 	// move = bhat_i / - d_i, assuming d is negative.
 | |
| 	bHat := xb // ab^-1 b
 | |
| 	for i, v := range d {
 | |
| 		if v >= 0 {
 | |
| 			move[i] = math.Inf(1)
 | |
| 		} else {
 | |
| 			move[i] = bHat[i] / math.Abs(v)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // replaceBland uses the Bland rule to find the indices to swap if the minimum
 | |
| // move is 0. The indices to be swapped are replace and minIdx (following the
 | |
| // nomenclature in the main routine).
 | |
| func replaceBland(A mat.Matrix, ab *mat.Dense, xb []float64, basicIdxs, nonBasicIdx []int, r, move []float64) (replace, minIdx int, err error) {
 | |
| 	m, _ := A.Dims()
 | |
| 	// Use the traditional bland rule, except don't replace a constraint which
 | |
| 	// causes the new ab to be singular.
 | |
| 	for i, v := range r {
 | |
| 		if v > -blandNegTol {
 | |
| 			continue
 | |
| 		}
 | |
| 		minIdx = i
 | |
| 		err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
 | |
| 		if err != nil {
 | |
| 			// Either unbounded or something went wrong.
 | |
| 			return -1, -1, err
 | |
| 		}
 | |
| 		replace = floats.MinIdx(move)
 | |
| 		if math.Abs(move[replace]) > blandZeroTol {
 | |
| 			// Large enough that it shouldn't be a problem
 | |
| 			return replace, minIdx, nil
 | |
| 		}
 | |
| 		// Find a zero index where replacement is non-singular.
 | |
| 		biCopy := make([]int, len(basicIdxs))
 | |
| 		for replace, v := range move {
 | |
| 			if v > blandZeroTol {
 | |
| 				continue
 | |
| 			}
 | |
| 			copy(biCopy, basicIdxs)
 | |
| 			biCopy[replace] = nonBasicIdx[minIdx]
 | |
| 			abTmp := mat.NewDense(m, len(biCopy), nil)
 | |
| 			extractColumns(abTmp, A, biCopy)
 | |
| 			// If the condition number is reasonable, use this index.
 | |
| 			if mat.Cond(abTmp, 1) < 1e16 {
 | |
| 				return replace, minIdx, nil
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return -1, -1, ErrBland
 | |
| }
 | |
| 
 | |
| func verifyInputs(initialBasic []int, c []float64, A mat.Matrix, b []float64) error {
 | |
| 	m, n := A.Dims()
 | |
| 	if m > n {
 | |
| 		panic("lp: more equality constraints than variables")
 | |
| 	}
 | |
| 	if len(c) != n {
 | |
| 		panic("lp: c vector incorrect length")
 | |
| 	}
 | |
| 	if len(b) != m {
 | |
| 		panic("lp: b vector incorrect length")
 | |
| 	}
 | |
| 	if len(c) != n {
 | |
| 		panic("lp: c vector incorrect length")
 | |
| 	}
 | |
| 	if len(initialBasic) != 0 && len(initialBasic) != m {
 | |
| 		panic("lp: initialBasic incorrect length")
 | |
| 	}
 | |
| 
 | |
| 	// Do some sanity checks so that ab does not become singular during the
 | |
| 	// simplex solution. If the ZeroRow checks are removed then the code for
 | |
| 	// finding a set of linearly indepent columns must be improved.
 | |
| 
 | |
| 	// Check that if a row of A only has zero elements that corresponding
 | |
| 	// element in b is zero, otherwise the problem is infeasible.
 | |
| 	// Otherwise return ErrZeroRow.
 | |
| 	for i := 0; i < m; i++ {
 | |
| 		isZero := true
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			if A.At(i, j) != 0 {
 | |
| 				isZero = false
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		if isZero && b[i] != 0 {
 | |
| 			// Infeasible
 | |
| 			return ErrInfeasible
 | |
| 		} else if isZero {
 | |
| 			return ErrZeroRow
 | |
| 		}
 | |
| 	}
 | |
| 	// Check that if a column only has zero elements that the respective C vector
 | |
| 	// is positive (otherwise unbounded). Otherwise return ErrZeroColumn.
 | |
| 	for j := 0; j < n; j++ {
 | |
| 		isZero := true
 | |
| 		for i := 0; i < m; i++ {
 | |
| 			if A.At(i, j) != 0 {
 | |
| 				isZero = false
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		if isZero && c[j] < 0 {
 | |
| 			return ErrUnbounded
 | |
| 		} else if isZero {
 | |
| 			return ErrZeroColumn
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // initializeFromBasic initializes the basic feasible solution given a set of
 | |
| // basic indices. It extracts the columns of A specified by basicIdxs and finds
 | |
| // the x values at that location. These are stored into xb.
 | |
| //
 | |
| // If the columns of A are not linearly independent or if the initial set is not
 | |
| // feasible, an error is returned.
 | |
| func initializeFromBasic(xb []float64, ab *mat.Dense, b []float64) error {
 | |
| 	m, _ := ab.Dims()
 | |
| 	if len(xb) != m {
 | |
| 		panic("simplex: bad xb length")
 | |
| 	}
 | |
| 	xbMat := mat.NewVecDense(m, xb)
 | |
| 
 | |
| 	err := xbMat.SolveVec(ab, mat.NewVecDense(m, b))
 | |
| 	if err != nil {
 | |
| 		return errors.New("lp: subcolumns of A for supplied initial basic singular")
 | |
| 	}
 | |
| 	// The solve ensures that the equality constraints are met (ab * xb = b).
 | |
| 	// Thus, the solution is feasible if and only if all of the x's are positive.
 | |
| 	allPos := true
 | |
| 	for _, v := range xb {
 | |
| 		if v < -initPosTol {
 | |
| 			allPos = false
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	if !allPos {
 | |
| 		return errors.New("lp: supplied subcolumns not a feasible solution")
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // extractColumns copies the columns specified by cols into the columns of dst.
 | |
| func extractColumns(dst *mat.Dense, A mat.Matrix, cols []int) {
 | |
| 	r, c := dst.Dims()
 | |
| 	ra, _ := A.Dims()
 | |
| 	if ra != r {
 | |
| 		panic("simplex: row mismatch")
 | |
| 	}
 | |
| 	if c != len(cols) {
 | |
| 		panic("simplex: column mismatch")
 | |
| 	}
 | |
| 	col := make([]float64, r)
 | |
| 	for j, idx := range cols {
 | |
| 		mat.Col(col, idx, A)
 | |
| 		dst.SetCol(j, col)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // findInitialBasic finds an initial basic solution, and returns the basic
 | |
| // indices, ab, and xb.
 | |
| func findInitialBasic(A mat.Matrix, b []float64) ([]int, *mat.Dense, []float64, error) {
 | |
| 	m, n := A.Dims()
 | |
| 	basicIdxs := findLinearlyIndependent(A)
 | |
| 	if len(basicIdxs) != m {
 | |
| 		return nil, nil, nil, ErrSingular
 | |
| 	}
 | |
| 
 | |
| 	// It may be that this linearly independent basis is also a feasible set. If
 | |
| 	// so, the Phase I problem can be avoided.
 | |
| 	ab := mat.NewDense(m, len(basicIdxs), nil)
 | |
| 	extractColumns(ab, A, basicIdxs)
 | |
| 	xb := make([]float64, m)
 | |
| 	err := initializeFromBasic(xb, ab, b)
 | |
| 	if err == nil {
 | |
| 		return basicIdxs, ab, xb, nil
 | |
| 	}
 | |
| 
 | |
| 	// This set was not feasible. Instead the "Phase I" problem must be solved
 | |
| 	// to find an initial feasible set of basis.
 | |
| 	//
 | |
| 	// Method: Construct an LP whose optimal solution is a feasible solution
 | |
| 	// to the original LP.
 | |
| 	// 1) Introduce an artificial variable x_{n+1}.
 | |
| 	// 2) Let x_j be the most negative element of x_b (largest constraint violation).
 | |
| 	// 3) Add the artificial variable to A with:
 | |
| 	//      a_{n+1} = b - \sum_{i in basicIdxs} a_i + a_j
 | |
| 	//    swap j with n+1 in the basicIdxs.
 | |
| 	// 4) Define a new LP:
 | |
| 	//   minimize  x_{n+1}
 | |
| 	//   subject to [A A_{n+1}][x_1 ... x_{n+1}] = b
 | |
| 	//          x, x_{n+1} >= 0
 | |
| 	// 5) Solve this LP. If x_{n+1} != 0, then the problem is infeasible, otherwise
 | |
| 	// the found basis can be used as an initial basis for phase II.
 | |
| 	//
 | |
| 	// The extra column in Step 3 is defined such that the vector of 1s is an
 | |
| 	// initial feasible solution.
 | |
| 
 | |
| 	// Find the largest constraint violator.
 | |
| 	// Compute a_{n+1} = b - \sum{i in basicIdxs}a_i + a_j. j is in basicIDx, so
 | |
| 	// instead just subtract the basicIdx columns that are not minIDx.
 | |
| 	minIdx := floats.MinIdx(xb)
 | |
| 	aX1 := make([]float64, m)
 | |
| 	copy(aX1, b)
 | |
| 	col := make([]float64, m)
 | |
| 	for i, v := range basicIdxs {
 | |
| 		if i == minIdx {
 | |
| 			continue
 | |
| 		}
 | |
| 		mat.Col(col, v, A)
 | |
| 		floats.Sub(aX1, col)
 | |
| 	}
 | |
| 
 | |
| 	// Construct the new LP.
 | |
| 	// aNew = [A, a_{n+1}]
 | |
| 	// bNew = b
 | |
| 	// cNew = 1 for x_{n+1}
 | |
| 	aNew := mat.NewDense(m, n+1, nil)
 | |
| 	aNew.Copy(A)
 | |
| 	aNew.SetCol(n, aX1)
 | |
| 	basicIdxs[minIdx] = n // swap minIdx with n in the basic set.
 | |
| 	c := make([]float64, n+1)
 | |
| 	c[n] = 1
 | |
| 
 | |
| 	// Solve the Phase I linear program.
 | |
| 	_, xOpt, newBasic, err := simplex(basicIdxs, c, aNew, b, 1e-10)
 | |
| 	if err != nil {
 | |
| 		return nil, nil, nil, fmt.Errorf("lp: error finding feasible basis: %s", err)
 | |
| 	}
 | |
| 
 | |
| 	// The original LP is infeasible if the added variable has non-zero value
 | |
| 	// in the optimal solution to the Phase I problem.
 | |
| 	if math.Abs(xOpt[n]) > phaseIZeroTol {
 | |
| 		return nil, nil, nil, ErrInfeasible
 | |
| 	}
 | |
| 
 | |
| 	// The basis found in Phase I is a feasible solution to the original LP if
 | |
| 	// the added variable is not in the basis.
 | |
| 	addedIdx := -1
 | |
| 	for i, v := range newBasic {
 | |
| 		if v == n {
 | |
| 			addedIdx = i
 | |
| 		}
 | |
| 		xb[i] = xOpt[v]
 | |
| 	}
 | |
| 	if addedIdx == -1 {
 | |
| 		extractColumns(ab, A, newBasic)
 | |
| 		return newBasic, ab, xb, nil
 | |
| 	}
 | |
| 
 | |
| 	// The value of the added variable is in the basis, but it has a zero value.
 | |
| 	// See if exchanging another variable into the basic set finds a feasible
 | |
| 	// solution.
 | |
| 	basicMap := make(map[int]struct{})
 | |
| 	for _, v := range newBasic {
 | |
| 		basicMap[v] = struct{}{}
 | |
| 	}
 | |
| 	var set bool
 | |
| 	for i := range xOpt {
 | |
| 		if _, inBasic := basicMap[i]; inBasic {
 | |
| 			continue
 | |
| 		}
 | |
| 		newBasic[addedIdx] = i
 | |
| 		if set {
 | |
| 			mat.Col(col, i, A)
 | |
| 			ab.SetCol(addedIdx, col)
 | |
| 		} else {
 | |
| 			extractColumns(ab, A, newBasic)
 | |
| 			set = true
 | |
| 		}
 | |
| 		err := initializeFromBasic(xb, ab, b)
 | |
| 		if err == nil {
 | |
| 			return newBasic, ab, xb, nil
 | |
| 		}
 | |
| 	}
 | |
| 	return nil, nil, nil, ErrInfeasible
 | |
| }
 | |
| 
 | |
| // findLinearlyIndependnt finds a set of linearly independent columns of A, and
 | |
| // returns the column indexes of the linearly independent columns.
 | |
| func findLinearlyIndependent(A mat.Matrix) []int {
 | |
| 	m, n := A.Dims()
 | |
| 	idxs := make([]int, 0, m)
 | |
| 	columns := mat.NewDense(m, m, nil)
 | |
| 	newCol := make([]float64, m)
 | |
| 	// Walk in reverse order because slack variables are typically the last columns
 | |
| 	// of A.
 | |
| 	for i := n - 1; i >= 0; i-- {
 | |
| 		if len(idxs) == m {
 | |
| 			break
 | |
| 		}
 | |
| 		mat.Col(newCol, i, A)
 | |
| 		columns.SetCol(len(idxs), newCol)
 | |
| 		if len(idxs) == 0 {
 | |
| 			// A column is linearly independent from the null set.
 | |
| 			// If all-zero column of A are allowed, this code needs to be adjusted.
 | |
| 			idxs = append(idxs, i)
 | |
| 			continue
 | |
| 		}
 | |
| 		if mat.Cond(columns.Slice(0, m, 0, len(idxs)+1), 1) > 1e12 {
 | |
| 			// Not linearly independent.
 | |
| 			continue
 | |
| 		}
 | |
| 		idxs = append(idxs, i)
 | |
| 	}
 | |
| 	return idxs
 | |
| }
 | 
