mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			261 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2018 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package fourier
 | |
| 
 | |
| import "gonum.org/v1/gonum/fourier/internal/fftpack"
 | |
| 
 | |
| // FFT implements Fast Fourier Transform and its inverse for real sequences.
 | |
| type FFT struct {
 | |
| 	work []float64
 | |
| 	ifac [15]int
 | |
| 
 | |
| 	// real temporarily store complex data as
 | |
| 	// pairs of real values to allow passing to
 | |
| 	// the backing code. The length of real
 | |
| 	// must always be half the length of work.
 | |
| 	real []float64
 | |
| }
 | |
| 
 | |
| // NewFFT returns an FFT initialized for work on sequences of length n.
 | |
| func NewFFT(n int) *FFT {
 | |
| 	var t FFT
 | |
| 	t.Reset(n)
 | |
| 	return &t
 | |
| }
 | |
| 
 | |
| // Len returns the length of the acceptable input.
 | |
| func (t *FFT) Len() int { return len(t.real) }
 | |
| 
 | |
| // Reset reinitializes the FFT for work on sequences of length n.
 | |
| func (t *FFT) Reset(n int) {
 | |
| 	if 2*n <= cap(t.work) {
 | |
| 		t.work = t.work[:2*n]
 | |
| 		t.real = t.real[:n]
 | |
| 	} else {
 | |
| 		t.work = make([]float64, 2*n)
 | |
| 		t.real = make([]float64, n)
 | |
| 	}
 | |
| 	fftpack.Rffti(n, t.work, t.ifac[:])
 | |
| }
 | |
| 
 | |
| // Coefficients computes the Fourier coefficients of the input sequence,
 | |
| // converting the time series in seq into the frequency spectrum, placing
 | |
| // the result in dst and returning it. This transform is unnormalized; a
 | |
| // call to Coefficients followed by a call of Sequence will multiply the
 | |
| // input sequence by the length of the sequence.
 | |
| //
 | |
| // If the length of seq is not t.Len(), Coefficients will panic.
 | |
| // If dst is nil, a new slice is allocated and returned. If dst is not nil and
 | |
| // the length of dst does not equal t.Len()/2+1, Coefficients will panic.
 | |
| func (t *FFT) Coefficients(dst []complex128, seq []float64) []complex128 {
 | |
| 	if len(seq) != t.Len() {
 | |
| 		panic("fourier: sequence length mismatch")
 | |
| 	}
 | |
| 	if dst == nil {
 | |
| 		dst = make([]complex128, t.Len()/2+1)
 | |
| 	} else if len(dst) != t.Len()/2+1 {
 | |
| 		panic("fourier: destination length mismatch")
 | |
| 	}
 | |
| 	copy(t.real, seq)
 | |
| 	fftpack.Rfftf(len(t.real), t.real, t.work, t.ifac[:])
 | |
| 	dst[0] = complex(t.real[0], 0)
 | |
| 	if len(seq) < 2 {
 | |
| 		return dst
 | |
| 	}
 | |
| 	if len(seq)%2 == 1 {
 | |
| 		dst[len(dst)-1] = complex(t.real[len(t.real)-2], t.real[len(t.real)-1])
 | |
| 	} else {
 | |
| 		dst[len(dst)-1] = complex(t.real[len(t.real)-1], 0)
 | |
| 	}
 | |
| 	for i := 1; i < len(dst)-1; i++ {
 | |
| 		dst[i] = complex(t.real[2*i-1], t.real[2*i])
 | |
| 	}
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| // Sequence computes the real perodic sequence from the Fourier coefficients,
 | |
| // converting the frequency spectrum in coeff into a time series, placing the
 | |
| // result in dst and returning it. This transform is unnormalized; a call to
 | |
| // Coefficients followed by a call of Sequence will multiply the input sequence
 | |
| // by the length of the sequence.
 | |
| //
 | |
| // If the length of coeff is not t.Len()/2+1, Sequence will panic.
 | |
| // If dst is nil, a new slice is allocated and returned. If dst is not nil and
 | |
| // the length of dst does not equal the length of coeff, Sequence will panic.
 | |
| func (t *FFT) Sequence(dst []float64, coeff []complex128) []float64 {
 | |
| 	if len(coeff) != t.Len()/2+1 {
 | |
| 		panic("fourier: coefficients length mismatch")
 | |
| 	}
 | |
| 	if dst == nil {
 | |
| 		dst = make([]float64, t.Len())
 | |
| 	} else if len(dst) != t.Len() {
 | |
| 		panic("fourier: destination length mismatch")
 | |
| 	}
 | |
| 	dst[0] = real(coeff[0])
 | |
| 	if len(dst) < 2 {
 | |
| 		return dst
 | |
| 	}
 | |
| 	nf := coeff[len(coeff)-1]
 | |
| 	if len(dst)%2 == 1 {
 | |
| 		dst[len(dst)-2] = real(nf)
 | |
| 		dst[len(dst)-1] = imag(nf)
 | |
| 	} else {
 | |
| 		dst[len(dst)-1] = real(nf)
 | |
| 	}
 | |
| 
 | |
| 	for i, cv := range coeff[1 : len(coeff)-1] {
 | |
| 		dst[2*i+1] = real(cv)
 | |
| 		dst[2*i+2] = imag(cv)
 | |
| 	}
 | |
| 	fftpack.Rfftb(len(dst), dst, t.work, t.ifac[:])
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| // Freq returns the relative frequency center for coefficient i.
 | |
| // Freq will panic if i is negative or greater than or equal to t.Len().
 | |
| func (t *FFT) Freq(i int) float64 {
 | |
| 	if i < 0 || t.Len() <= i {
 | |
| 		panic("fourier: index out of range")
 | |
| 	}
 | |
| 	step := 1 / float64(t.Len())
 | |
| 	return step * float64(i)
 | |
| }
 | |
| 
 | |
| // CmplxFFT implements Fast Fourier Transform and its inverse for complex sequences.
 | |
| type CmplxFFT struct {
 | |
| 	work []float64
 | |
| 	ifac [15]int
 | |
| 
 | |
| 	// real temporarily store complex data as
 | |
| 	// pairs of real values to allow passing to
 | |
| 	// the backing code. The length of real
 | |
| 	// must always be half the length of work.
 | |
| 	real []float64
 | |
| }
 | |
| 
 | |
| // NewCmplxFFT returns an CmplxFFT initialized for work on sequences of length n.
 | |
| func NewCmplxFFT(n int) *CmplxFFT {
 | |
| 	var t CmplxFFT
 | |
| 	t.Reset(n)
 | |
| 	return &t
 | |
| }
 | |
| 
 | |
| // Len returns the length of the acceptable input.
 | |
| func (t *CmplxFFT) Len() int { return len(t.work) / 4 }
 | |
| 
 | |
| // Reset reinitializes the FFT for work on sequences of length n.
 | |
| func (t *CmplxFFT) Reset(n int) {
 | |
| 	if 4*n <= cap(t.work) {
 | |
| 		t.work = t.work[:4*n]
 | |
| 		t.real = t.real[:2*n]
 | |
| 	} else {
 | |
| 		t.work = make([]float64, 4*n)
 | |
| 		t.real = make([]float64, 2*n)
 | |
| 	}
 | |
| 	fftpack.Cffti(n, t.work, t.ifac[:])
 | |
| }
 | |
| 
 | |
| // Coefficients computes the Fourier coefficients of a complex input sequence,
 | |
| // converting the time series in seq into the frequency spectrum, placing
 | |
| // the result in dst and returning it. This transform is unnormalized; a call
 | |
| // to Coefficients followed by a call of Sequence will multiply the input
 | |
| // sequence by the length of the sequence.
 | |
| //
 | |
| // If the length of seq is not t.Len(), Coefficients will panic.
 | |
| // If dst is nil, a new slice is allocated and returned. If dst is not nil and
 | |
| // the length of dst does not equal the length of seq, Coefficients will panic.
 | |
| // It is safe to use the same slice for dst and seq.
 | |
| func (t *CmplxFFT) Coefficients(dst, seq []complex128) []complex128 {
 | |
| 	if len(seq) != t.Len() {
 | |
| 		panic("fourier: sequence length mismatch")
 | |
| 	}
 | |
| 	if dst == nil {
 | |
| 		dst = make([]complex128, len(seq))
 | |
| 	} else if len(dst) != len(seq) {
 | |
| 		panic("fourier: destination length mismatch")
 | |
| 	}
 | |
| 	for i, cv := range seq {
 | |
| 		t.real[2*i] = real(cv)
 | |
| 		t.real[2*i+1] = imag(cv)
 | |
| 	}
 | |
| 	fftpack.Cfftf(len(dst), t.real, t.work, t.ifac[:])
 | |
| 	for i := range dst {
 | |
| 		dst[i] = complex(t.real[2*i], t.real[2*i+1])
 | |
| 	}
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| // Sequence computes the complex perodic sequence from the Fourier coefficients,
 | |
| // converting the frequency spectrum in coeff into a time series, placing the
 | |
| // result in dst and returning it. This transform is unnormalized; a call to
 | |
| // Coefficients followed by a call of Sequence will multiply the input sequence
 | |
| // by the length of the sequence.
 | |
| //
 | |
| // If the length of coeff is not t.Len(), Sequence will panic.
 | |
| // If dst is nil, a new slice is allocated and returned. If dst is not nil and
 | |
| // the length of dst does not equal the length of coeff, Sequence will panic.
 | |
| // It is safe to use the same slice for dst and coeff.
 | |
| func (t *CmplxFFT) Sequence(dst, coeff []complex128) []complex128 {
 | |
| 	if len(coeff) != t.Len() {
 | |
| 		panic("fourier: coefficients length mismatch")
 | |
| 	}
 | |
| 	if dst == nil {
 | |
| 		dst = make([]complex128, len(coeff))
 | |
| 	} else if len(dst) != len(coeff) {
 | |
| 		panic("fourier: destination length mismatch")
 | |
| 	}
 | |
| 	for i, cv := range coeff {
 | |
| 		t.real[2*i] = real(cv)
 | |
| 		t.real[2*i+1] = imag(cv)
 | |
| 	}
 | |
| 	fftpack.Cfftb(len(dst), t.real, t.work, t.ifac[:])
 | |
| 	for i := range dst {
 | |
| 		dst[i] = complex(t.real[2*i], t.real[2*i+1])
 | |
| 	}
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| // Freq returns the relative frequency center for coefficient i.
 | |
| // Freq will panic if i is negative or greater than or equal to t.Len().
 | |
| func (t *CmplxFFT) Freq(i int) float64 {
 | |
| 	if i < 0 || t.Len() <= i {
 | |
| 		panic("fourier: index out of range")
 | |
| 	}
 | |
| 	step := 1 / float64(t.Len())
 | |
| 	if i < (t.Len()-1)/2+1 {
 | |
| 		return step * float64(i)
 | |
| 	}
 | |
| 	return step * float64(i-t.Len())
 | |
| }
 | |
| 
 | |
| // ShiftIdx returns a shifted index into a slice of coefficients
 | |
| // returned by the CmplxFFT so that indexing into the coefficients
 | |
| // places the zero frequency component at the center of the spectrum.
 | |
| // ShiftIdx will panic if i is negative or greater than or equal to
 | |
| // t.Len().
 | |
| func (t *CmplxFFT) ShiftIdx(i int) int {
 | |
| 	if i < 0 || t.Len() <= i {
 | |
| 		panic("fourier: index out of range")
 | |
| 	}
 | |
| 	h := t.Len() / 2
 | |
| 	if i < h {
 | |
| 		return i + (t.Len()+1)/2
 | |
| 	}
 | |
| 	return i - h
 | |
| }
 | |
| 
 | |
| // UnshiftIdx returns inverse of ShiftIdx. UnshiftIdx will panic if i is
 | |
| // negative or greater than or equal to t.Len().
 | |
| func (t *CmplxFFT) UnshiftIdx(i int) int {
 | |
| 	if i < 0 || t.Len() <= i {
 | |
| 		panic("fourier: index out of range")
 | |
| 	}
 | |
| 	h := (t.Len() + 1) / 2
 | |
| 	if i < h {
 | |
| 		return i + t.Len()/2
 | |
| 	}
 | |
| 	return i - h
 | |
| }
 | 
