Files
gonum/testlapack/general.go

597 lines
13 KiB
Go

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
"github.com/gonum/lapack"
)
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// nanSlice allocates a new slice of length n filled with NaN.
func nanSlice(n int) []float64 {
s := make([]float64, n)
for i := range s {
s[i] = math.NaN()
}
return s
}
// transposeGeneral returns a new general matrix that is the transpose of the
// input. Nothing is done with data outside the {rows, cols} limit of the general.
func transposeGeneral(a blas64.General) blas64.General {
ans := blas64.General{
Rows: a.Cols,
Cols: a.Rows,
Stride: a.Rows,
Data: make([]float64, a.Cols*a.Rows),
}
for i := 0; i < a.Rows; i++ {
for j := 0; j < a.Cols; j++ {
ans.Data[j*ans.Stride+i] = a.Data[i*a.Stride+j]
}
}
return ans
}
// extractVMat collects the single reflectors from a into a matrix.
func extractVMat(m, n int, a []float64, lda int, direct lapack.Direct, store lapack.StoreV) blas64.General {
k := min(m, n)
switch {
default:
panic("not implemented")
case direct == lapack.Forward && store == lapack.ColumnWise:
v := blas64.General{
Rows: m,
Cols: k,
Stride: k,
Data: make([]float64, m*k),
}
for i := 0; i < k; i++ {
for j := 0; j < i; j++ {
v.Data[j*v.Stride+i] = 0
}
v.Data[i*v.Stride+i] = 1
for j := i + 1; j < m; j++ {
v.Data[j*v.Stride+i] = a[j*lda+i]
}
}
return v
case direct == lapack.Forward && store == lapack.RowWise:
v := blas64.General{
Rows: k,
Cols: n,
Stride: n,
Data: make([]float64, k*n),
}
for i := 0; i < k; i++ {
for j := 0; j < i; j++ {
v.Data[i*v.Stride+j] = 0
}
v.Data[i*v.Stride+i] = 1
for j := i + 1; j < n; j++ {
v.Data[i*v.Stride+j] = a[i*lda+j]
}
}
return v
}
}
// constructBidiagonal constructs a bidiagonal matrix with the given diagonal
// and off-diagonal elements.
func constructBidiagonal(uplo blas.Uplo, n int, d, e []float64) blas64.General {
bMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n-1; i++ {
bMat.Data[i*bMat.Stride+i] = d[i]
if uplo == blas.Upper {
bMat.Data[i*bMat.Stride+i+1] = e[i]
} else {
bMat.Data[(i+1)*bMat.Stride+i] = e[i]
}
}
bMat.Data[(n-1)*bMat.Stride+n-1] = d[n-1]
return bMat
}
// constructVMat transforms the v matrix based on the storage.
func constructVMat(vMat blas64.General, store lapack.StoreV, direct lapack.Direct) blas64.General {
m := vMat.Rows
k := vMat.Cols
switch {
default:
panic("not implemented")
case store == lapack.ColumnWise && direct == lapack.Forward:
ldv := k
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
if j > i {
v[i*ldv+j] = 0
} else if j == i {
v[i*ldv+i] = 1
} else {
v[i*ldv+j] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: m,
Cols: k,
Stride: k,
Data: v,
}
case store == lapack.RowWise && direct == lapack.Forward:
ldv := m
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
if j > i {
v[j*ldv+i] = 0
} else if j == i {
v[j*ldv+i] = 1
} else {
v[j*ldv+i] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: k,
Cols: m,
Stride: m,
Data: v,
}
case store == lapack.ColumnWise && direct == lapack.Backward:
rowsv := m
ldv := k
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
vrow := rowsv - i - 1
vcol := k - j - 1
if j > i {
v[vrow*ldv+vcol] = 0
} else if j == i {
v[vrow*ldv+vcol] = 1
} else {
v[vrow*ldv+vcol] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: rowsv,
Cols: ldv,
Stride: ldv,
Data: v,
}
case store == lapack.RowWise && direct == lapack.Backward:
rowsv := k
ldv := m
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
vcol := ldv - i - 1
vrow := k - j - 1
if j > i {
v[vrow*ldv+vcol] = 0
} else if j == i {
v[vrow*ldv+vcol] = 1
} else {
v[vrow*ldv+vcol] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: rowsv,
Cols: ldv,
Stride: ldv,
Data: v,
}
}
}
func constructH(tau []float64, v blas64.General, store lapack.StoreV, direct lapack.Direct) blas64.General {
m := v.Rows
k := v.Cols
if store == lapack.RowWise {
m, k = k, m
}
h := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
for i := 0; i < m; i++ {
h.Data[i*m+i] = 1
}
for i := 0; i < k; i++ {
vecData := make([]float64, m)
if store == lapack.ColumnWise {
for j := 0; j < m; j++ {
vecData[j] = v.Data[j*v.Cols+i]
}
} else {
for j := 0; j < m; j++ {
vecData[j] = v.Data[i*v.Cols+j]
}
}
vec := blas64.Vector{
Inc: 1,
Data: vecData,
}
hi := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
for i := 0; i < m; i++ {
hi.Data[i*m+i] = 1
}
// hi = I - tau * v * v^T
blas64.Ger(-tau[i], vec, vec, hi)
hcopy := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
copy(hcopy.Data, h.Data)
if direct == lapack.Forward {
// H = H * H_I in forward mode
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, hcopy, hi, 0, h)
} else {
// H = H_I * H in backward mode
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, hi, hcopy, 0, h)
}
}
return h
}
// constructQ constructs the Q matrix from the result of dgeqrf and dgeqr2.
func constructQ(kind string, m, n int, a []float64, lda int, tau []float64) blas64.General {
k := min(m, n)
return constructQK(kind, m, n, k, a, lda, tau)
}
// constructQK constructs the Q matrix from the result of dgeqrf and dgeqr2 using
// the first k reflectors.
func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64) blas64.General {
var sz int
switch kind {
case "QR":
sz = m
case "LQ":
sz = n
}
q := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
for i := 0; i < sz; i++ {
q.Data[i*sz+i] = 1
}
qCopy := blas64.General{
Rows: q.Rows,
Cols: q.Cols,
Stride: q.Stride,
Data: make([]float64, len(q.Data)),
}
for i := 0; i < k; i++ {
h := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
for j := 0; j < sz; j++ {
h.Data[j*sz+j] = 1
}
vVec := blas64.Vector{
Inc: 1,
Data: make([]float64, sz),
}
for j := 0; j < i; j++ {
vVec.Data[j] = 0
}
vVec.Data[i] = 1
switch kind {
case "QR":
for j := i + 1; j < sz; j++ {
vVec.Data[j] = a[lda*j+i]
}
case "LQ":
for j := i + 1; j < sz; j++ {
vVec.Data[j] = a[i*lda+j]
}
}
blas64.Ger(-tau[i], vVec, vVec, h)
copy(qCopy.Data, q.Data)
// Mulitply q by the new h
switch kind {
case "QR":
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, h, 0, q)
case "LQ":
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, h, qCopy, 0, q)
}
}
return q
}
// checkBidiagonal checks the bidiagonal decomposition from dlabrd and dgebd2.
// The input to this function is the answer returned from the routines, stored
// in a, d, e, tauP, and tauQ. The data of original A matrix (before
// decomposition) is input in aCopy.
//
// checkBidiagonal constructs the V and U matrices, and from them constructs Q
// and P. Using these constructions, it checks that Q^T * A * P and checks that
// the result is bidiagonal.
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
// Check the answer.
// Construct V and U.
qMat := constructQPBidiagonal(lapack.ApplyQ, m, n, nb, a, lda, tauQ)
pMat := constructQPBidiagonal(lapack.ApplyP, m, n, nb, a, lda, tauP)
// Compute Q^T * A * P
aMat := blas64.General{
Rows: m,
Cols: n,
Stride: lda,
Data: make([]float64, len(aCopy)),
}
copy(aMat.Data, aCopy)
tmp1 := blas64.General{
Rows: m,
Cols: n,
Stride: n,
Data: make([]float64, m*n),
}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, qMat, aMat, 0, tmp1)
tmp2 := blas64.General{
Rows: m,
Cols: n,
Stride: n,
Data: make([]float64, m*n),
}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, tmp1, pMat, 0, tmp2)
// Check that the first nb rows and cols of tm2 are upper bidiagonal
// if m >= n, and lower bidiagonal otherwise.
correctDiag := true
matchD := true
matchE := true
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i >= nb && j >= nb {
continue
}
v := tmp2.Data[i*tmp2.Stride+j]
if i == j {
if math.Abs(d[i]-v) > 1e-12 {
matchD = false
}
continue
}
if m >= n && i == j-1 {
if math.Abs(e[j-1]-v) > 1e-12 {
matchE = false
}
continue
}
if m < n && i-1 == j {
if math.Abs(e[i-1]-v) > 1e-12 {
matchE = false
}
continue
}
if math.Abs(v) > 1e-12 {
correctDiag = false
}
}
}
if !correctDiag {
t.Errorf("Updated A not bi-diagonal")
}
if !matchD {
fmt.Println("d = ", d)
t.Errorf("D Mismatch")
}
if !matchE {
t.Errorf("E mismatch")
}
}
// constructQPBidiagonal constructs Q or P from the Bidiagonal decomposition
// computed by dlabrd and bgebd2.
func constructQPBidiagonal(vect lapack.DecompUpdate, m, n, nb int, a []float64, lda int, tau []float64) blas64.General {
sz := n
if vect == lapack.ApplyQ {
sz = m
}
var ldv int
var v blas64.General
if vect == lapack.ApplyQ {
ldv = nb
v = blas64.General{
Rows: m,
Cols: nb,
Stride: ldv,
Data: make([]float64, m*ldv),
}
} else {
ldv = n
v = blas64.General{
Rows: nb,
Cols: n,
Stride: ldv,
Data: make([]float64, m*ldv),
}
}
if vect == lapack.ApplyQ {
if m >= n {
for i := 0; i < m; i++ {
for j := 0; j <= min(nb-1, i); j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 1; i < m; i++ {
for j := 0; j <= min(nb-1, i-1); j++ {
if i-1 == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
} else {
if m < n {
for i := 0; i < nb; i++ {
for j := i; j < n; j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 0; i < nb; i++ {
for j := i + 1; j < n; j++ {
if j-1 == i {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
}
// The variable name is a computation of Q, but the algorithm is mostly the
// same for computing P (just with different data).
qMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
hMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
// set Q to I
for i := 0; i < sz; i++ {
qMat.Data[i*qMat.Stride+i] = 1
}
for i := 0; i < nb; i++ {
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
copy(qCopy.Data, qMat.Data)
// Set g and h to I
for i := 0; i < sz; i++ {
for j := 0; j < sz; j++ {
if i == j {
hMat.Data[i*sz+j] = 1
} else {
hMat.Data[i*sz+j] = 0
}
}
}
var vi blas64.Vector
// H -= tauQ[i] * v[i] * v[i]^t
if vect == lapack.ApplyQ {
vi = blas64.Vector{
Inc: v.Stride,
Data: v.Data[i:],
}
} else {
vi = blas64.Vector{
Inc: 1,
Data: v.Data[i*v.Stride:],
}
}
blas64.Ger(-tau[i], vi, vi, hMat)
// Q = Q * G[1]
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
}
return qMat
}
// printRowise prints the matrix with one row per line. This is useful for debugging.
// If beyond is true, it prints beyond the final column to lda. If false, only
// the columns are printed.
func printRowise(a []float64, m, n, lda int, beyond bool) {
for i := 0; i < m; i++ {
end := n
if beyond {
end = lda
}
fmt.Println(a[i*lda : i*lda+end])
}
}
// isOrthonormal checks that a general matrix is orthonormal.
func isOrthonormal(q blas64.General) bool {
n := q.Rows
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
dot := blas64.Dot(n,
blas64.Vector{Inc: 1, Data: q.Data[i*q.Stride:]},
blas64.Vector{Inc: 1, Data: q.Data[j*q.Stride:]},
)
if i == j {
if math.Abs(dot-1) > 1e-10 {
return false
}
} else {
if math.Abs(dot) > 1e-10 {
return false
}
}
}
}
return true
}