Files
gonum/graph/path/control_flow_lt.go
kortschak 1b3b29f16b graph/path: implement sophisticated algorithm
Both algorithms are included since the LTA appears to beat the SLTA for
all normal uses, but the SLTA beats the LTA for very large dense graphs.

Leave tools in the benchmark code to allow users to determine which one
they want to use for their data.
2017-09-12 09:50:52 +09:30

210 lines
5.4 KiB
Go

// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import "gonum.org/v1/gonum/graph"
// Dominators returns a dominator tree for all nodes in the flow graph
// g starting from the given root node.
func Dominators(root graph.Node, g graph.Directed) DominatorTree {
// The algorithm used here is essentially the Lengauer and Tarjan
// algorithm described in https://doi.org/10.1145%2F357062.357071
lt := lengauerTarjan{
indexOf: make(map[int64]int),
}
// step 1.
lt.dfs(g, root)
for i := len(lt.nodes) - 1; i > 0; i-- {
w := lt.nodes[i]
// step 2.
for _, v := range w.pred {
u := lt.eval(v)
if u.semi < w.semi {
w.semi = u.semi
}
}
lt.nodes[w.semi].bucket[w] = struct{}{}
lt.link(w.parent, w)
// step 3.
for v := range w.parent.bucket {
delete(w.parent.bucket, v)
u := lt.eval(v)
if u.semi < v.semi {
v.dom = u
} else {
v.dom = w.parent
}
}
}
// step 4.
for _, w := range lt.nodes[1:] {
if w.dom.node.ID() != lt.nodes[w.semi].node.ID() {
w.dom = w.dom.dom
}
}
// Construct the public-facing dominator tree structure.
dominatorOf := make(map[int64]graph.Node)
dominatedBy := make(map[int64][]graph.Node)
for _, w := range lt.nodes[1:] {
dominatorOf[w.node.ID()] = w.dom.node
did := w.dom.node.ID()
dominatedBy[did] = append(dominatedBy[did], w.node)
}
return DominatorTree{root: root, dominatorOf: dominatorOf, dominatedBy: dominatedBy}
}
// lengauerTarjan holds global state of the Lengauer-Tarjan algorithm.
// This is a mapping between nodes and the postordering of the nodes.
type lengauerTarjan struct {
// nodes is the nodes traversed during the
// Lengauer-Tarjan depth-first-search.
nodes []*ltNode
// indexOf contains a mapping between
// the id-dense representation of the
// graph and the potentially id-sparse
// nodes held in nodes.
//
// This corresponds to the vertex
// number of the node in the Lengauer-
// Tarjan algorithm.
indexOf map[int64]int
}
// ltNode is a graph node with accounting for the Lengauer-Tarjan
// algorithm.
//
// For the purposes of documentation the ltNode is given the name w.
type ltNode struct {
node graph.Node
// parent is vertex which is the parent of w
// in the spanning tree generated by the search.
parent *ltNode
// pred is the set of vertices v such that (v, w)
// is an edge of the graph.
pred []*ltNode
// semi is a number defined as follows:
// (i) After w is numbered but before its semidominator
// is computed, semi is the number of w.
// (ii) After the semidominator of w is computed, semi
// is the number of the semidominator of w.
semi int
// bucket is the set of vertices whose
// semidominator is w.
bucket map[*ltNode]struct{}
// dom is vertex defined as follows:
// (i) After step 3, if the semidominator of w is its
// immediate dominator, then dom is the immediate
// dominator of w. Otherwise dom is a vertex v
// whose number is smaller than w and whose immediate
// dominator is also w's immediate dominator.
// (ii) After step 4, dom is the immediate dominator of w.
dom *ltNode
// In general ancestor is nil only if w is a tree root
// in the forest; otherwise ancestor is an ancestor
// of w in the forest.
ancestor *ltNode
// Initially label is w. It is adjusted during
// the algorithm to maintain invariant (3) in the
// Lengauer and Tarjan paper.
label *ltNode
}
// dfs is the Lengauer-Tarjan DFS procedure.
func (lt *lengauerTarjan) dfs(g graph.Directed, v graph.Node) {
i := len(lt.nodes)
lt.indexOf[v.ID()] = i
ltv := &ltNode{
node: v,
semi: i,
bucket: make(map[*ltNode]struct{}),
}
ltv.label = ltv
lt.nodes = append(lt.nodes, ltv)
for _, w := range g.From(v) {
wid := w.ID()
idx, ok := lt.indexOf[wid]
if !ok {
lt.dfs(g, w)
// We place this below the recursive call
// in contrast to the original algorithm
// since w needs to be initialised, and
// this happens in the child call to dfs.
idx, ok = lt.indexOf[wid]
if !ok {
panic("path: unintialized node")
}
lt.nodes[idx].parent = ltv
}
ltw := lt.nodes[idx]
ltw.pred = append(ltw.pred, ltv)
}
}
// compress is the Lengauer-Tarjan COMPRESS procedure.
func (lt *lengauerTarjan) compress(v *ltNode) {
if v.ancestor.ancestor != nil {
lt.compress(v.ancestor)
if v.ancestor.label.semi < v.label.semi {
v.label = v.ancestor.label
}
v.ancestor = v.ancestor.ancestor
}
}
// eval is the Lengauer-Tarjan EVAL function.
func (lt *lengauerTarjan) eval(v *ltNode) *ltNode {
if v.ancestor == nil {
return v
}
lt.compress(v)
return v.label
}
// link is the Lengauer-Tarjan LINK procedure.
func (*lengauerTarjan) link(v, w *ltNode) {
w.ancestor = v
}
// DominatorTree is a flow graph dominator tree.
type DominatorTree struct {
root graph.Node
dominatorOf map[int64]graph.Node
dominatedBy map[int64][]graph.Node
}
// Root returns the root of the tree.
func (d DominatorTree) Root() graph.Node { return d.root }
// DominatorOf returns the immediate dominator of n.
func (d DominatorTree) DominatorOf(n graph.Node) graph.Node {
return d.dominatorOf[n.ID()]
}
// DominatedBy returns a slice of all nodes immediately dominated by n.
// Elements of the slice are retained by the DominatorTree.
func (d DominatorTree) DominatedBy(n graph.Node) []graph.Node {
return d.dominatedBy[n.ID()]
}