Files
gonum/mat/eigen_test.go
Brendan Tracey 3fa9374bd4 matrix: rename matrix to mat, and merge with mat64 and cmat128.
This merges the three packages, matrix, mat64, and cmat128. It then renames this big package to mat. It fixes the import statements and corresponding code
2017-06-13 10:26:10 -06:00

165 lines
3.8 KiB
Go

// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math/rand"
"testing"
"gonum.org/v1/gonum/floats"
)
func TestEigen(t *testing.T) {
for i, test := range []struct {
a *Dense
values []complex128
left *Dense
right *Dense
}{
{
a: NewDense(3, 3, []float64{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}),
values: []complex128{1, 1, 1},
left: NewDense(3, 3, []float64{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}),
right: NewDense(3, 3, []float64{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}),
},
} {
var e1, e2, e3, e4 Eigen
ok := e1.Factorize(test.a, true, true)
if !ok {
panic("bad factorization")
}
e2.Factorize(test.a, false, true)
e3.Factorize(test.a, true, false)
e4.Factorize(test.a, false, false)
v1 := e1.Values(nil)
if !cmplxEqual(v1, test.values) {
t.Errorf("eigenvector mismatch. Case %v", i)
}
if !Equal(e1.LeftVectors(), test.left) {
t.Errorf("left eigenvector mismatch. Case %v", i)
}
if !Equal(e1.Vectors(), test.right) {
t.Errorf("right eigenvector mismatch. Case %v", i)
}
// Check that the eigenvectors and values are the same in all combinations.
if !cmplxEqual(v1, e2.Values(nil)) {
t.Errorf("eigenvector mismatch. Case %v", i)
}
if !cmplxEqual(v1, e3.Values(nil)) {
t.Errorf("eigenvector mismatch. Case %v", i)
}
if !cmplxEqual(v1, e4.Values(nil)) {
t.Errorf("eigenvector mismatch. Case %v", i)
}
if !Equal(e1.Vectors(), e2.Vectors()) {
t.Errorf("right eigenvector mismatch. Case %v", i)
}
if !Equal(e1.LeftVectors(), e3.LeftVectors()) {
t.Errorf("right eigenvector mismatch. Case %v", i)
}
// TODO(btracey): Also add in a test for correctness when #308 is
// resolved and we have a CMat.Mul().
}
}
func cmplxEqual(v1, v2 []complex128) bool {
for i, v := range v1 {
if v != v2[i] {
return false
}
}
return true
}
func TestSymEigen(t *testing.T) {
// Hand coded tests with results from lapack.
for _, test := range []struct {
mat *SymDense
values []float64
vectors *Dense
}{
{
mat: NewSymDense(3, []float64{8, 2, 4, 2, 6, 10, 4, 10, 5}),
values: []float64{-4.707679201365891, 6.294580208480216, 17.413098992885672},
vectors: NewDense(3, 3, []float64{
-0.127343483135656, -0.902414161226903, -0.411621572466779,
-0.664177720955769, 0.385801900032553, -0.640331827193739,
0.736648893495999, 0.191847792659746, -0.648492738712395,
}),
},
} {
var es EigenSym
ok := es.Factorize(test.mat, true)
if !ok {
t.Errorf("bad factorization")
}
if !floats.EqualApprox(test.values, es.values, 1e-14) {
t.Errorf("Eigenvalue mismatch")
}
if !EqualApprox(test.vectors, es.vectors, 1e-14) {
t.Errorf("Eigenvector mismatch")
}
var es2 EigenSym
es2.Factorize(test.mat, false)
if !floats.EqualApprox(es2.values, es.values, 1e-14) {
t.Errorf("Eigenvalue mismatch when no vectors computed")
}
}
// Randomized tests
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{3, 5, 10, 70} {
for cas := 0; cas < 10; cas++ {
a := make([]float64, n*n)
for i := range a {
a[i] = rnd.NormFloat64()
}
s := NewSymDense(n, a)
var es EigenSym
ok := es.Factorize(s, true)
if !ok {
t.Errorf("Bad test")
}
// Check that the eigenvectors are orthonormal.
if !isOrthonormal(es.vectors, 1e-8) {
t.Errorf("Eigenvectors not orthonormal")
}
// Check that the eigenvalues are actually eigenvalues.
for i := 0; i < n; i++ {
v := NewVector(n, Col(nil, i, es.vectors))
var m Vector
m.MulVec(s, v)
var scal Vector
scal.ScaleVec(es.values[i], v)
if !EqualApprox(&m, &scal, 1e-8) {
t.Errorf("Eigenvalue does not match")
}
}
}
}
}