mirror of
https://github.com/gonum/gonum.git
synced 2025-10-23 23:23:15 +08:00

This merges the three packages, matrix, mat64, and cmat128. It then renames this big package to mat. It fixes the import statements and corresponding code
165 lines
3.8 KiB
Go
165 lines
3.8 KiB
Go
// Copyright ©2013 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package mat
|
|
|
|
import (
|
|
"math/rand"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
func TestEigen(t *testing.T) {
|
|
for i, test := range []struct {
|
|
a *Dense
|
|
|
|
values []complex128
|
|
left *Dense
|
|
right *Dense
|
|
}{
|
|
{
|
|
a: NewDense(3, 3, []float64{
|
|
1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1,
|
|
}),
|
|
values: []complex128{1, 1, 1},
|
|
left: NewDense(3, 3, []float64{
|
|
1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1,
|
|
}),
|
|
right: NewDense(3, 3, []float64{
|
|
1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1,
|
|
}),
|
|
},
|
|
} {
|
|
var e1, e2, e3, e4 Eigen
|
|
ok := e1.Factorize(test.a, true, true)
|
|
if !ok {
|
|
panic("bad factorization")
|
|
}
|
|
e2.Factorize(test.a, false, true)
|
|
e3.Factorize(test.a, true, false)
|
|
e4.Factorize(test.a, false, false)
|
|
|
|
v1 := e1.Values(nil)
|
|
if !cmplxEqual(v1, test.values) {
|
|
t.Errorf("eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !Equal(e1.LeftVectors(), test.left) {
|
|
t.Errorf("left eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !Equal(e1.Vectors(), test.right) {
|
|
t.Errorf("right eigenvector mismatch. Case %v", i)
|
|
}
|
|
|
|
// Check that the eigenvectors and values are the same in all combinations.
|
|
if !cmplxEqual(v1, e2.Values(nil)) {
|
|
t.Errorf("eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !cmplxEqual(v1, e3.Values(nil)) {
|
|
t.Errorf("eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !cmplxEqual(v1, e4.Values(nil)) {
|
|
t.Errorf("eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !Equal(e1.Vectors(), e2.Vectors()) {
|
|
t.Errorf("right eigenvector mismatch. Case %v", i)
|
|
}
|
|
if !Equal(e1.LeftVectors(), e3.LeftVectors()) {
|
|
t.Errorf("right eigenvector mismatch. Case %v", i)
|
|
}
|
|
|
|
// TODO(btracey): Also add in a test for correctness when #308 is
|
|
// resolved and we have a CMat.Mul().
|
|
}
|
|
}
|
|
|
|
func cmplxEqual(v1, v2 []complex128) bool {
|
|
for i, v := range v1 {
|
|
if v != v2[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func TestSymEigen(t *testing.T) {
|
|
// Hand coded tests with results from lapack.
|
|
for _, test := range []struct {
|
|
mat *SymDense
|
|
|
|
values []float64
|
|
vectors *Dense
|
|
}{
|
|
{
|
|
mat: NewSymDense(3, []float64{8, 2, 4, 2, 6, 10, 4, 10, 5}),
|
|
values: []float64{-4.707679201365891, 6.294580208480216, 17.413098992885672},
|
|
vectors: NewDense(3, 3, []float64{
|
|
-0.127343483135656, -0.902414161226903, -0.411621572466779,
|
|
-0.664177720955769, 0.385801900032553, -0.640331827193739,
|
|
0.736648893495999, 0.191847792659746, -0.648492738712395,
|
|
}),
|
|
},
|
|
} {
|
|
var es EigenSym
|
|
ok := es.Factorize(test.mat, true)
|
|
if !ok {
|
|
t.Errorf("bad factorization")
|
|
}
|
|
if !floats.EqualApprox(test.values, es.values, 1e-14) {
|
|
t.Errorf("Eigenvalue mismatch")
|
|
}
|
|
if !EqualApprox(test.vectors, es.vectors, 1e-14) {
|
|
t.Errorf("Eigenvector mismatch")
|
|
}
|
|
|
|
var es2 EigenSym
|
|
es2.Factorize(test.mat, false)
|
|
if !floats.EqualApprox(es2.values, es.values, 1e-14) {
|
|
t.Errorf("Eigenvalue mismatch when no vectors computed")
|
|
}
|
|
}
|
|
|
|
// Randomized tests
|
|
rnd := rand.New(rand.NewSource(1))
|
|
for _, n := range []int{3, 5, 10, 70} {
|
|
for cas := 0; cas < 10; cas++ {
|
|
a := make([]float64, n*n)
|
|
for i := range a {
|
|
a[i] = rnd.NormFloat64()
|
|
}
|
|
s := NewSymDense(n, a)
|
|
var es EigenSym
|
|
ok := es.Factorize(s, true)
|
|
if !ok {
|
|
t.Errorf("Bad test")
|
|
}
|
|
|
|
// Check that the eigenvectors are orthonormal.
|
|
if !isOrthonormal(es.vectors, 1e-8) {
|
|
t.Errorf("Eigenvectors not orthonormal")
|
|
}
|
|
|
|
// Check that the eigenvalues are actually eigenvalues.
|
|
for i := 0; i < n; i++ {
|
|
v := NewVector(n, Col(nil, i, es.vectors))
|
|
var m Vector
|
|
m.MulVec(s, v)
|
|
|
|
var scal Vector
|
|
scal.ScaleVec(es.values[i], v)
|
|
|
|
if !EqualApprox(&m, &scal, 1e-8) {
|
|
t.Errorf("Eigenvalue does not match")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|